하향링크 사용자 용량 개선을 위한 통계적 다중화기반의 RFH-OFDMA

정희원 정방철*, 이형진*, 성단근*

Statistical Multiplexing Based RFH-OFDMA System for Improving Downlink User Capacity

Bang Chul Jung*, Hyung Jin Lee*, Dan Keun Sung* Regular Members

요 약

본 논문에서는 하향링크에서 사용자 용량 증가를 위하여 통계적 다중화에 기반한 RFH-OFDMA (Random Frequency Hopping-Orthogonal Frequency Division Multiple Access) 방식을 제안한다. 사용자 용량은 한 셀에서 주어진 기본 데이터 전송률로 데이터 전송이 가능한 최대 사용자의 수를 의미한다. 본 논문에서는 제안된 통계적 다중화 기반의 RFH-OFDMA 방식의 하향링크 사용자 용량과 기존 FH-OFDMA 방식에서의 하향링크 사용자 용량을 비교한다. 사용자 용량은 부부중과 개수와 인접 셀 간섭에 의하여 제한되며 수신 SINR이 가장 열악한 환경에서의 시스템 용량을 상호 비교하기 위하여 사용자는 모두 셀 경계에 있다고 가정하고 인접 셀 간섭은 최대 값 을 갖는다고 가정한다. 시뮬레이션 결과를 통하여, 사용자의 채널 활성도가 0.1, 수신단에서 요구되는 Eb/I0가 6 dB, 3-sector 안테나가 사용된 경우에 제안된 RFH-OFDMA 방식이 262명을 수용할 수 있는 다중화할 수 있음을 보여준다.

Key Words: RFH-OFDMA, User capacity, Statistical multiplexing

ABSTRACT

We propose a random frequency hopping orthogonal frequency division multiple access (RFH-OFDMA) system based on statistical multiplexing for improving downlink user capacity. User capacity is defined as the maximum number of users served with a given basic data-rate in a cell. We compare the downlink user capacity of the proposed RFH-OFDMA system with that of the conventional frequency hopping OFDMA (FH-OFDMA) systems in the worst case where all users are located at the cell boundary. User capacity is limited by either the number of subcarriers or other-cell interference (OCI). Simulation results show that the proposed RFH-OFDMA system can accommodate 262 users in a 3-sector cell, while the conventional FH-OFDMA systems can accommodate 51 users, when the user channel activity and the required Eb/I0 are 0.1 and 6 dB, respectively, and all users are assumed to be located at the cell boundary.

* 한국과학기술원 전기 및 전자공학과 통신망 연구실(cejung, dksung)@ee.kaist.ac.kr
논문번호: KICS2004-11-263, 접수일자: 2004년 11월 5일
※ 본 연구를 위하여 볼트랩의 "2.3GHz 휴대 인터넷 서비스를 위한 통계적 다중화 기반의 효율적인 자원 관리 방안 연구" 위탁과제 연구비 지원에 의해 수행되었음.
I. 서론

최근 이동통신 시스템을 통하여 서비스되는 데이터 트래픽의 양이 급속도로 증가하고 있다. 이러한 경향으로부터, 데이터 트래픽은 향후 이동통신 시스템의 주요 트래픽이 될 것으로 기대된다. 데이터 트래픽은 대체적으로 버스티(bursty)한 특성을 갖고 이는 사용자의 채널 활성도가 낮은 결과를 낼 수 있다. 또한 데이터 트래픽의 경우 상향링크보다는 하향링크에서 더 많은 양이 존재한다. 무선 채널을 통하여 데이터 전송을 가능하게 하기 위하여 최근 다양한 이동통신 시스템이 제안되었다[1].

OFDM (Orthogonal Frequency Division Multiplexing) 기술은 주파수 선택적 채널 환경에서 효과적으로 데이터를 전송하는 기술로 알려져 있다. 또한, OFDM 기술에 기반한 OFDM-TDMA, OFDM-FDMA, OFDM-CDMA, FH-OFDMA 등 다양한 다중접속방식이 제안되었다[2]. 특히 FH-OFDMA의 경우, 인접 셀 간섭을 평균화시키고 셀 내 간섭을 줄이기 위해 셀들 이 이동통신 시스템에 적합하다. FH-OFDMA에서 각 사용자는 고유의 도와 패턴을 이용하여 각 셀마다 부반응파를 합가하여 데이터를 전송하고 기저국은 롤 선택시 각 사용자에게 서로 직교하는 도와 패턴을 할당하게 된다. 따라서 다수의 사용자는 서로 동일한 시간에 동일한 부반응파를 검출하지 않는다.

통계적 다중지는 각 사용자가 보낼 패킷이 존재할 경우만, 주어진 통신 링크를 사용하는 다중화 방식이다. 결과적으로 통계적 다중화를 통하여 통신 링크는 간헐적으로 링크를 사용하는 다수의 사용자들 효율적으로 수용할 수 있다. 통계적 다중화 기술은 그 특성상 링크를 사용함에 있어서 제어 정보를 필요로 하지 않기에 때문에, 스케줄링에 기반한 기술과 대조적이다. 본 논문에서는 하향링크 사용자용량 증가를 위하여 통계적 다중화 기반의 RFH (Random Frequency Hopping)-OFDMA 방식을 제안한다. 사용자용량은 셀 내 주어진 기본 데이터 전송을 이상으로 데이터를 전송할 수 있는 사용자의 최대 수를 의미한다. 제안한 방식을 통하여 사용자의 채널 활성도가 낮은 경우, 셀 내 사용 가능한 부반응파의 개수보다 많은 수의 사용자를 효과적으로 수용할 수 있다.

본 논문은 다음과 같이 구성된다. 2장에서는 사용 가능한 부반응파의 개수, 인접 셀 간섭, 사용자의 채널 활성도를 고려한 FH-OFDMA 시스템의 하향 링크 사용자용량을 분석하고 3장에서는 통계적 다중화 기반의 RFH-OFDMA 시스템을 제안하고 제안된 시스템의 하향 링크 사용자용량을 분석한다. 4장에서는 제안된 시스템의 성능을 컴퓨터 시뮬레이션을 통하여 분석하고 제안된 시스템과 기존 시스템의 사용자용량을 분석한다. 5장에서는 결론을 도출한다.

II. FH-OFDMA 시스템의 사용자용량

FDMA 시스템의 사용자용량 게산에 대한 기준의 접근 방식은 주파수 재사용률과 수신 신호 대잡음 비(signal-to-noise ratio; SNR)에 기초하고 있다[7]. 기존의 용량 분석에서는 인접 셀들의 모든 주파수 채널이 사용 중이라고 가정하였다. 이러한 가정은 혼실 사용자가 존재하고 있는 주파수 채널을 인접 셀의 다른 사용자도 사용하고 있다는 가정인 데, 혼합해 통신 시스템에서 시스템의 부하가 시스템용량보다 작다고 가정할 수 있는 상황이다. 따라서 이러한 시스템에서 사용자용량은 최악의 상황에 맞추어 설정된 주파수 재사용률에 의해 결정된 셀 내 사용 가능한 주파수 채널의 수와 같다. 또
한국통신학회논문지 '05-7 Vol.30 No.7A

그림 1. 시스템 모델

한 상기 기술한 사용자 분석 방식은 셀 내의 호를 설정한 사용자의 셀 활성도를 1이라 가정하였다. 이는 상대적으로 높은 0.5 정도의 셀 활성도를 갖는 움직이는 주로 이루어지는 시스템에서는 타당하다. 하지 만 데이터 서비스가 주를 이루는 시스템에서 사용자의 셀 활성도는 높은 0.2 이하일 것이다. 이 러한 경우 각 사용자는 하향 링크의 대부분의 시간 동안 데이터를 전송하지 않을 것이다.

그림 1은 FH-OFDMA 시스템의 하향 링크 시스템 모델을 나타낸다. 이 모델에서는 셀 전역된 r, 주파수 제한을 1로 가정하였다. 또한, 셀 수 이상이 사용될 수 있다. 그림 1에서 사용자는 셀 경계에 위치하고, 실선은 셀 기지국으로부터 수신되는 신호를 의미하고 점선은 외부 간섭 셀로부터의 인접 셀 간섭 신호(other cell interference; OCI)를 의미한다.

하향 링크에서 사용자 송신 분석을 위하여 먼저 각 사용자의 수신 신호 대 간섭 및 잡음 비(signal-to-interference-and noise ratio; SINR)가 분석되어야 한다. 또한, 셀을 사용자의 셀 활성도와 인접 셀의 시스템 부하가 고려되어야 한다. FH-OFDMA 시스템의 하향 링크 수신 신호 대 간섭 및 잡음 비는 다음과 같이 표현된다.

$$\frac{S}{I_0 + N_0} \geq \frac{P_T \cdot r^{-\alpha} \cdot X_0}{\lambda \left(\sum_{k=1}^{K} P_T \cdot d_i^{-\alpha} \cdot X_i \right) + N_0}$$

식 (1)에서 사용된 변수들은 다음과 같이 정의된다.

α: 경로 감쇠 상수
d_i: i번째 인접 셀 기지국과 사용자 사이의 거리
I_0: 사용자의 수신기에서의 인접 셀 간섭
i_0: 고려하는 인접 셀의 개수
k: 각 셀의 사용자의 평균 수

λ: 셀 안전 변수($\lambda = 1$: omni-antenna, $\lambda = 1 / 3$: 3-sector antenna)
P: 전체 부속파 중 동기 및 셀의 중심을 위해 사용되는 부속파의 비율
M: 셀에 할당된 부속파의 수
N_0: 수신기 잔차음
P_T: 각 부속파에의 전송 전력
r: 셀 반경
ν: 평균 사용자 셀 활성도
X_i: i번째 인접 셀 기지국으로부터의 log-normal shadowing 값
X_0: 홈 셀 기지국으로부터의 log-normal shadowing 값

식 (1)에서는 모든 셀에 동일한 수의 사용자가 존재하며, 각 사용자의 셀 활성도는 동일하다고 가정한다. 또한, 최적의 상황을 고려하기 위하여 모든 사용자는 셀 경계에 위치한다. 파일럿, 동기 등을 사용하는 셀은 셀 경계를 제외하고 각 셀에서 사용 가능한 부속파와 개수를 의미하는 M은 주파수 제 사용을 위해서 결정된다. 만약 수신기의 잔차음을 무시할 정도로 높은 전력으로 신호가 전송된다면 수신 E_b/I_0는 다음과 같이 표현된다.

$$\frac{E_b}{I_0} = \frac{S/\lambda}{R^{FEC} \cdot \mu}$$

식 (2)에서 R^{FEC}와 μ는 각각 셀 부호화율과 변조방식계수이다. 예를 들어, μ가 2이면 QPSK, 4이 면 16QAM을 의미한다. 만약 log-normal shadowing 값이 1이라 가장하면, 식 (2)는 다음과 같이 근사화된다.

$$\frac{E_b}{I_0} \approx \frac{\beta}{6\mu R^{FEC} \left(\frac{\nu k + \rho M}{M} \right)}$$

식 (3)에서

$$q = \frac{D}{r},$$

$$\beta = \frac{1}{1 + (\frac{1}{\sqrt{A}})^q + (\frac{1}{\sqrt{B}})^q + (\frac{1}{\sqrt{C}})^q + \cdots}.$$
최소 값을 사용자가 모두 실 가능한 무선에 위치하고 인접 셀 간섭이 최대일 때 얻어진다. 여기서 인접 셀 간섭의 최대 값은 인접 셀에 존재하는 모든 부호공간에 사용자가 데이터가 실리에 해 당한다. 따라서 인접 셀 간섭으로 인해 제한되는 사용자 용량은 다음과 같이 극소화된다.

\[
C_{OCT, FH} = \left(\frac{E_b}{I_0} \frac{1}{\text{max}_{OCT}} \right) (1 - \rho) M \]

\[
= \frac{\beta P (1 - \rho) M}{6\mu \lambda R_{\text{FEC}} \left(\frac{E_b}{I_0} \frac{1}{\text{required}} \right)}
\]

식 (5)에서 \(\frac{E_b}{I_0} \frac{1}{\text{required}} \)는 주어진 데이터 전송율 보장하기 위해 수신단에서 필요한 \(E_b/I_0 \)를 의미한다. 또한, 한 셀에서 사용자의 데이터 전송을 위하여 사용 가능한 부호공간의 개수는 다음과 같다.

\[
C_{FHI} = (1 - \rho) M
\]

따라서 FH-OFDMA 시스템에서 사용자 용량은 다음과 같이 표현된다.

\[
C_{FH-OFDMA} = \min\{C_{OCT, FH}, C_{FHI}\}
\]

그림 2는 FH-OFDMA 시스템의 사용자 용량을 필요한 \(E_b/I_0 \)에 대한 그림이다. 셀 사양 사용 가능한 부호공간 개수 \(M \)는 64이고 각 사용자는 기지국과의 통신을 위하여 1개의 부호공간과 사용한다. 또한, 주파수 제 사용율은 1로 가정한다. 그림에 서 알 수 있듯이, 사용자 용량은 수신단에서 요구되는 \(E_b/I_0 \)이 높을 경우 인접 셀 간섭에 의하여 제한될 수 있다(Interference Limited). 그러나 수신단에서 요구되는 \(E_b/I_0 \)이 낮을 경우 사용자의 용량은 부호공간의 개수로 제한된다(RESOURCE LIMITED). 만약 사용자 용량이 인접 셀 간섭으로 제한될 경우, 시스템을 사용한 사용자의 부호공간의 개수로 제한될 경우, 사용자는 인접 셀 간섭이 충분히 작더라도 더 이상의 사용자를 수용할 수 없다. 이는 새로운 사용자를 수용이 인접 셀에 간섭을 수용하기 때문이기 때문이다. 반대로 사용자 용량이 부호공간의 개수로 제한될 경우, 시스템은 인접 셀 간섭이 충분히 작더라도 더 이상의 사용자를 수용할 수 없다. 이는 사용 가능한 주파수 공간이 모두 할당되어 사용 중이기 때문이다.

그림 2. FH-OFDMA 시스템의 사용자 용량

이러한 resource limited 상황은 사용자의 채널 활성도 \(\nu \)가 낮을수록, 인접 셀 간섭의 영향 작용수록, 수신단에서 요구되는 \(E_b/I_0 \)가 작을수록 주로 발생한다.

III. 통제적 다중화 기반의 Random Frequency Hopping (RFH)-OFDMA

3.1 RFH-OFDMA

기존의 FH-OFDMA 시스템에서는, 기지국은 동일한 시간에 동일한 부호공간과 복수 사용자에게 할당하지 않는다. 따라서 한 셀 내에는 \(F_{\text{FH}} \) 개의 서로 다른 주파수도 모양 패턴이 존재할 수 있다. 각 사용자에게 할당된 주파수도 모양 패턴은 기존
FH-OFDMA 시스템의 통신 채널이 된다. 만약 사용자 용량이 지정의 수에 의하여 제한된다면, 더욱 많은 사용자를 수용하기 위하여 통신 채널의 증가가 필요하다. 특히, 만약 사용자 채널 할당도가 낮은 상황이라면 각 사용자에게 할당된 주파수 도역 패턴의 사용 효율 utilization은 현저히 떨어진다. 기존 시스템과는 달리 제안된 통계적 다중화 기반의 RFH-OFDMA 시스템에서는, 복수의 사용자가 서로 다른 시간에 동일한 주파수를 사용하는 것을 허용한다. 기지국은 호출 요청 시, 각 사용자에게 무작위로 도역 패턴을 할당한다. 이 때, 도역 패턴은 사용자당의 ESN(electronic serial number) 번호 동의 사용자별로 고유 식별자를 이용하여 생성된다.

그림 3은 제안된 통계적 다중화 기반의 RFH-OFDMA 시스템에서 주파수 도역 패턴을 나타낸다. 여기서 T_i는 cyclic prefix를 포함한 OFDM 심벌의 시간을 의미한다. 각 사용자는 주파수 도역 패턴에 따라 각 OFDM 심벌마다 사용하는 부호(SC: subcarrier)를 바꾸고 사용자별로 동일한 부호를 같은 경우 도역 패턴의 충돌이 일어날 수 있다. 그러나 사용자들의 채널 할당도가 높은 환경에서 대부분의 사용자는 비활성(inactive) 상태이다. 그림 3에서 '사용자 #1'과 '사용자 #2'는 비활성 상태이다. 하지만 그들은 세션 (session)이 열려있는 동안 자신의 도역 패턴을 유지하게 된다. 이 경우, 활성 상태의 사용자와 비활성 상태의 사용자가 각 도역 패턴의 충돌은 실제 데이터를 전송하는 활성화(Active) 된 사용자의 성능에 영향을 주지 않는다. 그림 3에서 어두운 색으로 표시된 블록이 이런 경우의 충돌을 나타낸다.

만약 활성화된 사용자간 도역 패턴의 충돌이 발생하였을 경우, 기존 FH-CDMA 시스템에서는 그것은 제거할 수 없는 셋 내 사용자간 간섭(hit)으로 간주하였다. 왜냐하면 사용자간 통신이 맞추어지 않았다고 가정하기 때문이다. 그러나 하향형흐 환경에서는 모든 사용자가 동기화된 송수신이 가능하므로 사용자간 도역 패턴 충돌은 기지국에 의하여 검출될 수 있다. 만약 활성화된 사용자간 도역 패턴의 충돌이 발생하면, 기지국은 충돌을 일으킨 사용자들의 데이터를 비교하고 모든 데이터가 같으면 모든 충돌된 데이터를 제거 없이 전송한다(상호, syncry). 이를 통해 충돌된 모든 사용자의 데이터를 한 실별 에너지로 정상하게 되어 에너지 이용이 생긴다. 반대로 충돌을 일으킨 사용자들의 데이터가

\[
P_e = \frac{1}{1 - \left(1 - \frac{\gamma}{\beta} \cdot M \right)^{K-1}}
\]

식 (8)에서 K는 셋내 모든 사용자의 수를 의미하고 이것은 사용 가능한 부호군수 M보다 클 수도 있다. 주어진 사용자 채널 활성도 (C)에서 채널 충돌은 셋 내 사용자의 수가 증가함에 따라 함께 증가한다. 식 (8)은 활성화된 사용자간 도역 충돌원을 나타낸다.

3.2 사용자 용량 (User Capacity)

앞서 언급한 것과 같이 제안된 시스템에서 도역 패턴 충돌이 발생하면 충돌이 발생한 실별은 충돌을 일으킨 사용자들의 데이터의 동일성 여부에 따라 상승 또는 첫째로 제어된다. 상승은 수신단에 에너지 액적을 제공하고 첫째는 전송되는 정보의 손실을 일으키고 결과적으로 수신단에서 요구하는 Eb/No를 증가시켜 에너지 손실을 가져온다. 그러므로 셋 간섭으로 인해 제어되는 제안된 시스템의 사용자 용량은 앞의 FH-OFDMA 경우와 같이 셋 간섭 자원에 사용자들이 배치되어 있는 환경의 환경에서에서는 식 (5)의 유사한 형태로 표현된다.
식 (9)에서 ΔP는 도약 패턴 중돌로 인하여 손실된 정보를 복구하기 위하여 필요한 추가적 에너지를 의미한다. 추가적 에너지는 도약 패턴 중돌 확률(P_d)이 높아질수록 증가하고 사용자 용량($C_{OCR,RFH}$)은 감소한다. 또한, 제안된 시스템에서 사용자 용량이 무선 자원의 수에 의하여 제한될 때, 수용 가능한 무선 자원(주파수 도약 패턴)의 수는 수신단에서 복구 가능한 도약 패턴 중돌 확률에 의하여 결정된다.

\[
C_{RFH} = 1 + \frac{\log (1 - P_c)}{\log \left(\frac{\frac{1}{\mu} \left(1 - \rho \right) M}{\frac{P_c}{\mu}}\right)}
\]

식 (10)은 식 (8)로부터 유도된다. 한 셀에서 수용 가능한 무선 자원의 수는 $\lambda = 0.1$ 무선 사용자의 셀 간 환경 등(ψ)과 수신기에서 복구 가능한 도약 패턴 중돌 확률(P_c)에 의하여 변화한다. 식 (10)에서 P_c는 요구되는 FER (frame error rate) 성능과 셀 부하기의 성능에 의하여 결정된다. 따라서 제안된 통계적 다중화 기반의 RFH-OFDMA 시스템의 사용자 용량은 다음 식과 같이 표현된다.

\[
C_{RFH-OFDMA} = \min \{ C_{OCR,RFH}, C_{RFH} \}
\]

그림 4는 제안된 RFH-OFDMA 시스템에서 수용 가능한 도약 패턴 중돌 확률화에 이에 따라 추가적으로 필요한 에너지에 따른 사용자 용량을 나타낸다. 한 셀에서 사용 가능한 부반송수는 $\lambda = 0.1$ 무선 사용자의 수 100과 가로축은 도약 패턴 중돌 확률이 0일 때, 요구되는 Eb/No를 나타내고 세로축은 하향링크 사용자 용량을 나타낸다. 또한, 그림 4에서 세션은 $C_{RFH,OCR}$ 전제선은 C_{RFH}를 나타낸다. 사용자 용량은 $C_{RFH,OCR}$와 C_{RFH} 중 작은 값으로 결정된다. 도약 패턴 중돌 확률이 증가함수록 주어진 FER 성능을 만족시키기 위한 추가적 에너지(ΔP)가 증가하게 된다. 만약 주어진 도약 패턴 중돌 확률에 대한 추가적 에너지가 줄일 수 있다면 사용자 용량은 증가한다. 도약 패턴 중돌 확률이 증가하면 $C_{RFH,OCR}$는 감소하지만 C_{RFH}는 증가한다. 따라서 $C_{RFH,OCR}$와 C_{RFH} 사이에는 trade-off가 존재한다. 제안된 RFH-OFDMA 시스템 설계에서 중요한 것은 요구되는 Eb/No와 ΔP 값을 줄이는 것이다. 이

\[C_{OCR,RFH} = \frac{\beta^2 \left(1 - \rho \right) M}{6 \mu R_F c} \left(\frac{E}{N_0}\right)_{\text{required}} + \Delta P\]

\[C_{RFH} = 1 + \frac{\log (1 - P_c)}{\log \left(\frac{1}{\mu} \left(1 - \rho \right) M\right)}\]

\[C_{RFH-OFDMA} = \min \{ C_{OCR,RFH}, C_{RFH} \}\]

\[\text{Required Eb/No(dB)}\]

\[\text{User capacity}\]

\[\text{FEC}=1/3, \mu=2, \text{OCI}=\text{Max}, \lambda=1, p=0.2\]

\[\text{Required Eb/No(dB)}\]

\[\text{User capacity}\]

\[\text{FEC}=1/3, \mu=2, \text{OCI}=\text{Max}, \lambda=1/3, p=0.2\]

\[\text{Required Eb/No(dB)}\]

\[\text{User capacity}\]
위의 변수는 셀룰라 시스템에서 10~20 Mbps를 제공하는 OFDM 시스템에 기초한 것이다[21]。

각 사용자는 한 개의 OFDM 심벌에서 12개의 부반송파를 이용하여 전송하고 가정한다. 데이터 전송을 위하여 사용되는 768개의 부반송파를 총 12개의 그룹으로 나누고 각 사용자의 데이터는 이 그룹 당 1개의 부반송파를 이용하여 전송한다. 이 경우 각 그룹에서 사용가능한 총 부반송파의 개수(\(M\))는 64개가 된다. 또한 변조 방식은 QPSK가 사용되고 채널 부호기는 부호율 1/3의 터보부호가 사용된 [20]. 따라서 각 사용자가 활성화된 상태에서 전송하는 데이터 전송율은 35 kbps가 된다. 이 데이터 전송율은 시스템의 기본 데이터 전송률(basic data rate)이 된다. 수신단에서 터보복호기 기법은 최적의 수신기 알고리즘이 MAP (maximum-a-posteriori) 알고리즘이 사용되고 최대 복호 횟수는 8번으로 제한한다. 채널 부호화는 680 비트 단위로 이루어진다.

그림 5(a)는 제한된 RFH-OFDMA 시스템에서 주 파수 도약 패턴 충돌에 따른 FER 성능을 보여준다. 그림에서 알 수 있듯이 충돌이 없을 경우 1% FER 성능을 위해서 1.35 dB의 \(E_{b}I_{0}\)가 필요하다. 하지만 도약 패턴 충돌 확률이 증가하면서 동일한 1% FER 성능을 위하여 추가적인 에너지가 필요하게 된다. 그림 5(b)는 이러한 추가적 에너지를 보여준다. 앞서 기술한 바와 같이 추가적 에너지의 양은 채널 부호기의 성능과 밀접한 관련을 갖는다. 만약 사용된 부호율보다 높은 부호율을 사용하거나 터보복호기 보다 나쁜 성능을 갖는 부호기를 사용할 경우 추가적 에너지의 양은 증가한다. 도약 패턴 충돌 확률이 0.4일 때, 1% FER 성능을 위하여 추가적으로 필요한 에너지는 약 2.5 dB가 된다. 따라서 이러한 경우 제한된 시스템의 사용자 수용은 채널 확장도(\(\rho\))와 \(\lambda\)가 0.2이고 \(\lambda\)가 1, 1/3일 때 각각 동일하게 132명이다. 이 값은 그림 4를 통하여 알 수 있다. 이는 기존 FH-OFDMA 시스템이 동일한 환경에서 사용자를 50명 수용하는 것과 비교하여 매우 높은 용량이다.

표 1은 기존 FH-OFDMA 시스템과 제한된 RFH-OFDMA 시스템의 사용자 용량을 채널 활성도와 수신단에서 요구하는 \(E_{b}I_{0}\)에 대하여 정리한 것이다. log-normal shadowing 등의 시스템 마진(margin)을 고려하여 요구하는 \(E_{b}I_{0}\)가 6 dB인 경우를 나타낸다. 표 1에서는 수신단에서 수용 가능한 도약 패턴 충돌 확률을 0.4로 가정하고 이를 극복하기 위해 추가적으로 필요한 에너지를 3 dB로 가정하고 있는 compensation(\(p_{c}\))가 이에 의하여 수신 복호기 에서 추가적으로 필요한 에너지의 양이 3 dB 보다 커지기 시작하여 시스템은 다시 Interference limited 상황으로 그 용량이 제한되기 때문이다. 기존 시스템의 경우 사용자 채널 활성도에 따라 사용자 용량이 변하지 않는 경향이 있는데 이는 사용자 용량이 인접 셀 간섭이 아니라 사용 가능한 무선 자원의 수에 의하여 제한되는 경우이기 때문이다. 표 1로부터 사용자의 채널 활성도가 낮은 경우 제한된 시스템이 기존의 시스템에 비하여 훨씬 많은 사용자를 수용할 수 있음을 알 수 있다. 따라서 제한된 시스템은 사용자의 채널 활성도가 낮은 데이터를 주요 서비스로 하는 차세대 이동통신 시스템에 적합할 것으로 예상된다.
표 1. 요구되는 Eb/N0가 6 dB인 경우의 제안된 RFH-OFDMA 시스템과 기존 FH-OFDMA 시스템의 사용자 용량 비교

<table>
<thead>
<tr>
<th>$R^t_{\text{SEC}} = 1/3$, $\mu = 2$, $\rho = 0.2$, $\Delta_P = 3dB$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda = 1$</td>
</tr>
<tr>
<td>FH</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.2</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.8</td>
</tr>
</tbody>
</table>

V. 결론

참고 문헌

[2] ‘cdma2000 High Rate Packet Data Air Inter-

[6] T. Ikeda, S. Sampei, and N. Morinaga “TDMA-based adaptive modulation with dy-

[7] T. S. Rappaport, Wireless communications: prin-

[9] E. A. Geraniotis and M. B. Pursley, “Error probability for slow-frequency-hopped spread-

정방철 (Bang Chul Jung) 정회원
2002년 2월 이주대학교 전자공학부(학사)
2004년 8월 한국과학기술원 전자전산학과(석사)
2004년 9월 한국과학기술원 전자전산학과 박사과정
<관심분야> 차세대이동통신시스템, OFDM/CDMA/MIMO기반 무선통신, 무선자원관리, UWB 시스템

이형진 (Hyung Jin Lee) 정회원
2004년 2월 서울대학교 전자공학과(학사)
2004년 3월 한국과학기술원 전자전산학과 석사과정
<관심분야> 차세대이동통신시스템, OFDM 동통신시스템

성단근 (Dan Keun Sung) 정회원
1975년 2월 서울대학교 전자공학과(공학사)
1982년 8월 텍사스 주립대학교 전기 및 컴퓨터공학부 석사
1986년 5월 텍사스 주립대학교 전기 및 컴퓨터공학부 박사
<주요경력>
1977년-1980년 한국전자통신연구원(ETRI) 전공 연구원
1986년 8월-현재 한국과학기술원 전자전산학과 교수
1993년-1994년 정보통신진흥원 교환관리위원
1996년-1999년 인공위성 연구센터 소장
2002년-2003년 미국 연방표준기술연구소 방문연구원
<학회 활동>
2000년-현재 JCN 국제저널 편집위원
2002년-현재 IEEE Communications Magazine 편집위원
2003년-현재 JCCI 학술대회 조정위원장
2003년-2005년 IEEE ICC 2005(Seoul), General Conference Chair, TPC Vice-Chair
<관심분야> 차세대 이동통신시스템 및 이동통신망, 교환망, 차세대 WLAN, UWB 시스템 등