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Abstract—This paper investigates power allocation algorithms
for OFDM-based cognitive radio systems, where the intra-system
channel state information (CSI) of the secondary user (SU) is
perfectly known. However, due to loose cooperation between the
SU and the primary user (PU), the inter-system CSI is only
partially available to the SU transmitter. Two types of PUs are
considered to have different capabilities. One is a dumb (Peak
Interference-Power tolerable) system that can tolerate a certain
amount of peak interference at each subchannel. The other
is a more sophisticated (Average Interference-Power tolerable)
system that can tolerate the interference from the SU as long
as the average interference over all subchannels is within a
certain threshold. Accordingly, we introduce an interference
power outage constraint, with which the outage is maintained
within a target level. The outage is here defined as the probability
that peak or average interference power to the PU is greater
than a given threshold. With both this interference-power outage
constraint along with a transmit-power constraint, we propose
optimal and suboptimal algorithms to maximize the capacity of
the SU. We evaluate the spectral efficiency through extensive
simulations and show that the SU can achieve higher performance
(up to two times) with the more sophisticated PU than with the
dumb PU.

I. I NTRODUCTION

Cognitive radio (CR) is a highly promising technology to
solve the spectrum insufficiency problem [1]. In spectrum
sharing based CR networks, where a secondary (unlicensed)
system coexists with a primary (licensed) system, a funda-
mental design problem is how to maximize the throughput of
the secondary user (SU) while ensuring the quality of service
(QoS) of the primary user (PU). Based on how not to harm the
primary system, transmission modes are classified into three
types: interweaved, overlayandunderlay modes[2].

In the interweaved mode, the secondary system can utilize
the unused license band, i.e., a spectrum hole, when the
spectrum is typically under-utilized. The secondary transmitter
in this mode needs to have the real-time functionality for
monitoring spectrum and detecting the spectrum hole that
changes with time and geographic location. The overlay mode
enables the secondary system to utilize a license band when the
primary system is using the band. The secondary transmitter
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is assumed to have perfect knowledge of the primary message.
Therefore, the secondary transmitter may use this knowledge
to mitigate the interference seen by its receiver using dirty
paper coding and/or to relay the primary signal to compensate
for the SNR (signal-to-noise ratio) at the primary receiver.

In the underlay mode, simultaneous transmissions of pri-
mary and secondary systems are also allowed under the con-
dition that the secondary system interferes lower than a certain
threshold with the primary system. Accordingly, the concept
of interference-temperature has been introduced to determine a
tolerable interference level at the primary receiver. By the way,
recently, the Federal Communications Commission (FCC) has
ruled out the possibility of using the underlay mode based
on interference-temperature in dynamic spectrum sharing en-
vironments due to several disadvantages [3]. However, we still
believe that the interference-temperature mode is a promising
strategy to improve spectral efficiency in spite of several
practical obstacles and intensive academic research is needed
to eliminate the obstacles. In this paper, we concentrate on the
underlay mode in multi-carrier CR systems and investigate the
system capacity gain obtained by this underlay transmission
mode.

A. Related Work

In the underlay CR setting, optimal power allocation algo-
rithms have been developed for orthogonal frequency-division
multiplexing (OFDM) systems [4] and for multiple input
multiple output (MIMO) systems [5]. In order to keep the
interference at the PU receiver (PU-Rx) below a desired level,
these papers [4], [5] assumed that the SU transmitter (SU-
Tx) is fully aware of the channel from the SU-Tx to the
PU-Rx. However, compared to the intra-system channel state
information (CSI) between the SU-Tx and the SU receiver
(SU-Rx), which is relatively easy to obtain, it would be
difficult or even infeasible for the SU-Tx to obtain the perfect
inter-system CSI because the primary and secondary systems
are usually loosely coupled. Even if they are tightly coupled,
obtaining the perfect inter-system CSI may be a big burden for
the SU due to a large amount of feedback overhead. Therefore,
assuming only partial CSI between the SU and the PU seems
to be a reasonable approach.

The impact of imperfect channel knowledge and capacity
maximization problems with partial CSI have been extensively
investigated in the non-CR setting (see [6], [7] and references



therein). However, these studies are not directly applicable
to our CR setting which has two-dimensional channels: SU-
Tx→SU-Rx and SU-Tx→PU-Rx. Zhanget al. [8], [9] inves-
tigated a robust cognitive beamforming problem with partial
CSI in MISO and MIMO environments.

In this paper, we consider OFDM-based CR systems in the
problem setting, which makes our paper different from theirs.
Huanget al. [11] studied the resource allocation problem in
OFDM-based CR systems with partial CSI, where the authors
assumed partial intra-system CSI (between SU-TX and SU-
RX) and perfect inter-system CSI (between SU-TX and PU-
RX). However, this is not a good assumption because as
we mentioned above, the inter-system partial CSI assumption
is more reasonable rather than the intra-system partial CSI
due to loose cooperation between the SU and the PU. In
this paper, we focus on a problem of maximizing capacity
in OFDM-based CR systems, where the SU-Tx hasperfect
intra-system CSIand partial inter-system CSI. The partial
CSI means that we have knowledge only about the average
channel gain over all the subchannels instead of individual
channel gain for each subchannel. In particular, we deal with
a little considered problem so far: what are the ramifications of
different capabilities in the PU and how much more capacity
could be obtained if the SU is operating in band with a more
sophisticated PU instead of a dumb PU.

The remainder of this paper is organized as follows. In
Section II, we first present our system model and describe our
partial CSI assumption. We formulate capacity maximization
problems subject to the transmit-power constraint and peak
or average interference-power outage constraint. In order to
solve these problems, in Section III, we propose an optimal
power allocation algorithm and a suboptimal power allocation
algorithm. In Section IV, we demonstrate our power allocation
algorithms through extensive simulations. Finally, in Section
V, we draw conclusions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider an OFDM-based CR network where both PU
and SU share the same spectrum resource withN subchannels
in bandwidthB. We denote byN = {1, 2, · · · , N} the set of
all subchannels. The signal model of an SU can be represented
asy=Dh2x+z, whereN×1 vectorsy andx are the received
and transmitted signals, respectively;Dh2 is a diagonal matrix
with diagonal elementsh2 = [h21, · · · , h2N ]T , which is a
channel response from the SU-Tx to the SU-Rx; andz is the
noise vector. Furthermore, the channel response from the SU-
Tx to the PU-Rx is denoted by a vectorh1 =[h11, · · · , h1N ]T .

Suppose that the SU-Tx has perfect CSI for its own link
h2. In other words, it knows instantaneous channel gains
g2n = |h2n|2 for all subchannels∀n ∈ N . However, due to
the lack of inter-system cooperation, the PU intermittently
informs the SU-Tx of only partial CSI abouth1. Based
on the assumption that a subchannelization with sufficient
interleaving depth is applied, we use an uncorrelated fading
channel model [12]. Therefore, in this case, theh1 is a
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Fig. 1. The system model for OFDM-based CR systems with perfect intra-
system CSI and partial inter-system CSI

zero-mean complex Gaussian random vector and the channel
gains g1n = |h1n|2,∀n ∈ N are independent and identically
distributed (i.i.d.) exponential random variables with mean
λ1. The partial CSI includes this average channel gainλ1,
and we further assume that the channel is time-varying and
frequency-selective but the mean remains unchanged until the
next feedback.

B. Problem Formulation

Our objective is to determine the optimal transmit power
allocation vectorp = [p1, · · · , pN ]T of SU-Tx such that
the capacity of the SU is maximized while the QoS of the
PU is guaranteed by keeping an outage probability within a
target levelε. We define the outage probabilityPout(·) as the
probability that the interference power to the PU is greater than
a threshold, i.e., interference-temperatureImax,n or Imax. Mo-
tivated by these considerations, we mathematically formulate
two types of optimization problems.

The first problem[P-peak] assumes that the PU is a dumb
(peak interference-power tolerable) system that can tolerate
a certain amount of peak interference at each subchannel.
Thus, in this problem, we attempt to find an optimal power
allocation vectorp for maximizing the capacity under a
total transmit-power constraint and apeak interference-power
outage constraint.

[P-peak]:

max
p≥0

∑

n∈N
B log2

(
1 +

1
Γ

g2npn

N0B

)
(1)

subject to
∑

n∈N
pn ≤ Pmax, (2)

Pout(p)= Pr[g1npn >Imax,n] ≤ ε, ∀n∈N , (3)

where N0 is the noise power spectral density andPmax is
the maximal transmit power of the SU;Imax,n is the peak
interference temperature threshold that the PU can tolerate
at subchanneln, which may differ from subchannel to sub-
channel. Here,Γ denotes the SNR-gap to capacity, which is a
function of the desired BER (bit error rate), coding gain and
noise margin [13]. For notational simplicity, we will absorbΓ
into the definition ofN0.

In the second problem[P-average], we assume that the PU
operates in a more sophisticated system rather than the dumb



system. The PU has an average interference-power tolerable
capability so that it can tolerate the interference from the SU
as long as the average of interference over all subchannels is
within a certain threshold. The rationale behind this averaging
assumption is that even though there is large interference in
some subchannels, small interference in the other subchannels
can compensate for the performance of PU in an average
sense. Thus, in this problem, we try to find an optimal power
allocation vectorp for maximizing the capacity under a total
transmit-power constraint and anaverageinterference-power
outage constraint.

[P-average] :

max
p≥0

∑

n∈N
B log2

(
1 +

1
Γ

g2npn

N0B

)
(4)

subject to
∑

n∈N
pn ≤ Pmax, (5)

Pout(p)=Pr
[ 1
N

∑

n∈N
g1npn >Imax

]
≤ ε, (6)

whereImax is the average interference temperature threshold
that the PU can tolerate over all subchannels.

III. POWER ALLOCATION ALGORITHM WITH PARTIAL CSI

A. Capacity maximization of SU with Peak Interference-Power
tolerable PU: [P-peak]

The problem[P-peak] is the same as the classical water-
filling problem [14] except the peak interference-power outage
constraint (3). Sinceg1n is assumed to follow an exponential
distribution, we can rewrite this constraint (3) as follows:

pn ≤ Imax,n

F−1
E (1− ε)

, ∀n ∈ N , (7)

whereF−1
E (·) is the inverse cumulative density function (CDF)

of an exponential distribution with the meanλ1.
It is worthwhile to mention thatF−1

E (1− ε) can be in-
terpreted as aneffective channel gain. The constraint (7),
which limits the maximum allowable transmit power on each
subchanneln, is additionally introduced into the classical
water-filling problem. Therefore, we can easily obtain the
following optimal power allocation algorithm for[P-peak],
so calledcapped water-filling1.

pn =
[

1
µ
− N0B

g2n

]Imax,n/F−1
E (1−ε)

0

, ∀n ∈ N , (8)

where[z]ba
.= min [max [a, z] , b]; µ is a non-negative Lagrange

multiplier associated with the total transmit-power constraint
(2) and is chosen such that

∑
n

pn = min

[
Pmax,

∑
n

Imax,n

F−1
E (1− ε)

]
. (9)

1This terminology is borrowed from [5] where the authors obtained a similar
form of solution in a different problem setting.

B. Capacity maximization of SU with Average Interference-
Power tolerable PU:[P-average]

To deal with the problem[P-average], let us introduce
random variablesXn = png1n for all n ∈ N , which are
independently exponential distributed with meanpnλ1, andX
denotes the sum of these random variables. Then, the average
interference-power outage constraint (6) in the problem[P-
average]can be rewritten as

Pr [X =
∑

n

Xn > N · Imax] ≤ ε. (10)

To further examine this constraint (10), it is necessary to know
the distribution ofX. If the transmit power is equally allocated
to all the subchannels, i.e.,pn = p for all n ∈ N , then
X follows an Erlang distribution (the sum of several i.i.d.
exponential variables),X ∼ Erlang (N, 1/(pλ1)). Therefore,
we can find the upper bound of powerp to satisfy this outage
constraint.

However, in general, the power allocation at the SU-Tx
is not even in order to exploit the frequency-selectivity of
the channel. Since it is hard to explicitly determine the
distribution of X for the general power allocation, we use
the Gaussian approximation based on theLyapunov’s central
limit theorem (CLT)[15]. In order to apply the Lyapunov’s
CLT, the following Lyapunov conditionshould be satisfied:

lim
N→∞

(∑N
n=1 r3

n

) 1
3

(∑N
n=1 σ2

n

) 1
2

= 0, (11)

wherern is defined as the third central moment of the random
variableXn, i.e., E

[
(Xn −mn)3

]
; mn andσ2

n represent the
finite mean and variance of the exponential distributed random
variableXn, respectively. We can easily check this condition,
but omit the proof due to the paper length limitation.

Thus, for a large number of subchannels,X can be approx-
imated as a normally distributed random variable with mean
m and varianceσ2:

m '
∑

n

pnλ1 and

σ2 '
∑

n

(pnλ1)2.
(12)

Thus, we can rewrite the constraint (10) as:

Pout(p) = 1− FN (NImax) (13)

=
1
2
erfc

(
NImax −m√

2σ

)
≤ ε, (14)

whereFN (·) is the CDF of a normal distribution with mean
m and varianceσ2, anderfc(z) = 2√

π

∫∞
z

e−t2dt.
If a power allocation is given, then we can check whether

it satisfies the outage constraint (14) or not. Unfortunately,
however, it is difficult to solve the problem[P-average]simul-
taneously considering both constraints (5) and (14) because
(14) has a very complicated form.

Alternatively, we develop a suboptimal power allocation
algorithm, which repeatedly (however, it is very fast because



we require only a few iterations based on binary search.)
solves a subproblem having only a transmit-power constraint
using the classical water-filling algorithm and then adjusts the
available transmit powerP until the desired outage probability
is achieved. The following Lemma 1 tells us that the outage
probability is a strictly increasing function of the available
transmit powerP , and thus we can determine a uniqueP
using thebinary search.

Lemma 1:The Pout(p) is a strictly increasing function
of the available transmit powerP if the conventional
WATERFILLING (P ) is applied, i.e.,pn = [1/µ−N0B/g2n]+

for all n ∈ N , whereµ satisfies
∑

n pn = P .

Proof: Due to the property of the water-filling algorithm,
if the available transmit powerP increases, thenpn does
not decrease for anyn and at least more than onepn

increase. Accordingly, bothm and σ2 in (12) increase as
well. Since theerfc(·) is a decreasing function,Pout(p) =
1
2erfc

(
NImax−m√

2σ

)
is a strictly increasing function ofP . This

completes the proof.

The following algorithm describes the detailed procedure
for [P-average]with the help of Lemma 1.

1: Initialization:
P = Pmax andp = WATERFILLING (Pmax).
if Pout(p) > ε + δ,

then [a, b] ← [0, Pmax],
else,

go to Finish.
2: Repeat (binary search):

P = (a + b)/2 andp = WATERFILLING (P ).
if Pout(p) > ε + δ,

then [a, b] ← [a, P ],
else if Pout(p) < ε− δ,

then [a, b] ← [P , b],
else,

go to Finish.
3: Finish:

p is a suboptimal power allocation.

IV. N UMERICAL RESULTS

A. Simulation Setup

In simulations, without loss of generality, the total noise
power over the spectrum(N0B) ·N is set to be one and
the interference-temperature thresholds are adapted to the
level of noise power, i.e.,Imax,n = Imax = 1/N for all
n ∈ N . The channel gains[g1n, ∀n ∈ N ] and [g2n, ∀n ∈ N ]
are i.i.d. exponential random variables with meanλ1 and
λ2, respectively. We obtain numerical results based on105

randomly generated channel realizations.

B. Performance of the proposed algorithms

We examine the performance of our power allocation algo-
rithms by choosingN = 128 andε = 0.05. The error tolerance
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Fig. 2. The performance of proposed algorithms:N=128 andε=0.05.

δ for the algorithm for[P-average] is chosen to be a small
value of 10−5 (much smaller thanε). For your information,
the number of iterations until the convergence of binary search
is 15 times on average.

Fig. 2(a) shows the spectral efficiency for the SU with re-
spect to the maximal transmit power for different combinations
of the ratio w = λ1/λ2 (we fix λ2 = 1 and varyλ1). In
the low Pmax regime, the spectral efficiency increases as the
available power increases. On the other hand, whenPmax is
greater than a certain turning point, the spectral efficiency does
not further increase because the interference-power outage
constraints becomes dominant. We indicate the boundary of
power-limited and interference-limited regimes in the case of
[P-average]andw = 1 in the middle of figures.
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Fig. 3. Saturated outage probability versus the total number of subchannels.

Reducing the ratiow increases the spectral efficiency due
to loose interference-power outage constraints because the
PU goes far away from the SU. It is important to highlight
that the SU can always obtain the higher spectral efficiency
in [P-average] than [P-peak], e.g., more than two times in
terms of the saturated performance. This is because the more
sophisticated PU instead of the dumb one gives additional
freedom in power allocation to the SU. We may confirm
this argument by comparing the interference-power outage
constraint of [P-average] with that of [P-peak]. Since the
average interference-power outage constraint (6) is looser than
the peak interference-power outage constraint (3) at the same
interference-temperatureImax,n = Imax, ∀n ∈ N , more
flexible power allocation is possible.

Fig. 2(b) shows the outage probability for the PU. In the
power-limited regime, the outage probability is much lower
than the targetε = 0.05. If we keep increasingPmax until
the interference-limited regime, then the outage probability
is saturated to the target. The optimal algorithm for[P-
peak] always achieves the exact target requirement, while
the suboptimal algorithm for[P-average] exhibits a small
deviation from the target value due to Gaussian approximation
error.

C. Effect of the number of subchannels on Gaussian approx-
imation error

We investigate the relationship between the total number of
subchannels available and Gaussian approximation error. As
you can see in Fig. 3, the saturated outage probability sticks
to the target outage level as the number of subchannelsN
increases. In other words, the approximation error asymptoti-
cally goes to zero. However, if the system does not have the
sufficient number of subchannels, a suitable margin on the
target error probability will be necessary to make the system
robust.

V. CONCLUSION

In this paper, we considered OFDM-based CR systems with
perfect intra-system CSI and partial inter-system CSI and
investigated how much capacity can be achieved if the SU
is operating in a band with a more sophisticated PU instead
of a dumb PU. Accordingly, we formulated two problems,
[P-peak] and [P-average] that maximize the capacity of SU
while ensuring the outage probability below the target level
under outage constraint jointly with a classical transmit-power
constraint. To solve these problems, we proposed an optimal
power allocation algorithm for[P-peak] and a suboptimal
power allocation algorithm for[P-average]. Our suboptimal
algorithm may result in a small deviation from the target out-
age level due to Gaussian approximation error, however, this
gap asymptotically goes to zero as the number of subchannels
increases. We evaluated the spectral efficiency performance
through extensive simulations and concluded that the SU can
achieve higher performance with the more sophisticated PUin
[P-average] than with the dumb PU in[P-peak]. In terms
of saturated spectral efficiency, the performance gain obtained
with the more sophisticated PU is two times higher. Extension
to more general channel models that include correlation or
feedback delay might be a subject for future work.
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