
Contrabass: Concurrent Transmissions without

Coordination for Ad Hoc Networks

Sungro Yoon, Injong Rhee, Bang Chul Jung†, Babak Daneshrad‡ and Jae H. Kim∗

North Carolina State University, †Gyeongsang National University,
‡University of California, Los Angeles, ∗The Boeing Company

{syoon4, rhee}@ncsu.edu, bcjung@gnu.ac.kr, babak@ee.ucla.edu, jae.h.kim@boeing.com

Abstract—A practical protocol jointly considering PHY and
MAC for MIMO based concurrent transmissions in wireless ad
hoc networks, called Contrabass, is presented. Concurrent trans-
missions refer to simultaneous transmissions by multiple nodes
over the same carrier frequency within the same interference
range. Contrabass is the first-to-date open-loop based concurrent
transmission protocol which implements simultaneous channel
training for concurrently transmitting links without any control
message exchange. Its MAC protocol is designed for each active
transmitter to independently decide to transmit with near optimal
transmission probability. Contrabass maximizes the number of
successful concurrent transmissions, thus achieving very high
aggregate throughput, low delays and scalability even under
dynamic environments. The design choices of Contrabass are
deliberately made to enable practical implementation which is
demonstrated through GNURadio implementation and experi-
mentation.

I. INTRODUCTION

An important attribute of multi-antenna processing is the

ability to null out co-channel interference for improved signal

quality. Interference can be canceled at the transmitters by

using pre-coding techniques, at the receivers by adjusting

antenna weights, or both. This ability enables concurrent

transmissions, defined to be simultaneous transmissions over

the same carrier frequency by multiple transceivers residing in

the interference ranges of each other.

Consider a network where each node has m antennas. In

theory, up to m concurrent transmissions can be success-

fully decoded at receivers using the multiple input multiple

output (MIMO) detection techniques such as zero forcing

(ZF), minimum mean squared error (MMSE) and maximum

likelihood (ML). Any concurrent transmissions by more than

m transceivers are considered as collision. The recent standard

for MIMO communication, namely IEEE 802.11n [1], adopts

only a special case of concurrent transmissions in which only

one node is involved in the transmission at a time, using all

or part of its antennas and transceivers. The CSMA/CA is

used as an MAC protocol to ensure only one node within an

interference range to transmit at a time. We refer to this type

of concurrent transmissions as exclusive transmissions in this

paper, which is also called single-user MIMO in the literatures.

The exclusive transmissions miss out many opportunities

of concurrent transmissions. With exclusive transmissions, a

packet can be transmitted at a rate proportional to the number

of transceivers (i.e., theoretically m times a link rate), so the

transmission time of data is much shorter than using a single

transceiver. However, control overhead such as time duration

due to collisions, channel training, SIFS and DIFS, and ACK

transmissions must still be incurred per packet. To mitigate

the effect of this overhead, IEEE 802.11n aggregates multiple

packets and transmits them as a single large frame. Although

the aggregation amortizes the overheads over multiple sub-

packets, there are situations where aggregation may not be

possible due to the delay constraint of the packet. Concurrent

transmissions, on the other hand, can naturally implement this

amortizement without incurring delays because they permit

multiple nodes to transmit at the same time. Furthermore, the

transmission policy of FCC for unlicensed spectrum bands

limits the per-node transmission power and in the exclusive

transmissions, all antennas are co-located in the same node

and the transmission power per antenna should be decreased

as the number of transmit antennas increases [2]. However,

in concurrent transmissions the transmission power per node

remains constant independently of the number of concurrently

transmitting links as long as the transmitters are in different

nodes. The total power used for data transmission is increased

as the number of concurrently transmitting nodes and the total

data rate also increases compared to that of the exclusive

transmissions with the same number of transmit antennas.

See Sundaresan et al. [3] for initial performance comparison

between concurrent transmissions and exclusive transmissions.

Realizing the full potential of concurrent transmissions re-

quires an effective co-design of PHY and MAC protocol where

interference cancelation and collision avoidance should work

toward the same goal. The biggest challenge is to minimize

the control overhead of the protocol. There have been a

number of proposals for concurrent transmission protocols

including [3]–[7]. Unfortunately, none of them is used in

real systems because of high control overhead for supporting

concurrent transmissions which diminishes the performance

gain of concurrent transmission. Most overhead is incurred

by coordination (e.g., using RTS and CTS) among concurrent

transmitters to enable exclusive channel training.

Most of the earlier concurrent transmission protocols for

ad hoc networks run in two phases. In the first phase, they

perform RTS and CTS handshaking during which they perform

exclusive channel training. During the transmission of RTS and

CTS, no other transmitters can transmit so that each transmitter

and receiver pair can learn the channel state information (CSI)

without any interference from other transmitters. Typically,

RTS and CTS embed training sequences needed for channel

training. Another important task that RTS-CTS coordination

This paper was presented as part of the main technical program at IEEE INFOCOM 2011

978-1-4244-9920-5/11/$26.00 ©2011 IEEE 1134

performs is to determine the set of transmitters that can

transmit during the second phase. The total number of con-

current transmissions in the second phase should not exceed

the number of antennas at the receivers. In the second phase,

concurrent transmissions by the chosen set of transmitters take

place to transmit data packets. Since RTS and CTS must be

sent at a low rate, this handshaking incurs very high overhead.

In this paper, we design a joint PHY/MAC protocol for

MIMO based concurrent transmissions in ad hoc networks

which does not involve infrastructures and operates without

any coordination. By no coordination, we mean that the

protocol must not introduce control frames other than ACK.

The protocol is called Contrabass which is named after

CONcurrent TRAnsmission.

There are a number of challenges for coordination-free

concurrent transmissions. First, a receiver needs to estimate

the channel state from a transmitter without any explicit

coordination. The difficulty lies in that a receiver does not

know in advance who will send without prior coordination.

Second, the number of concurrently transmitting transceivers

must be kept to less than or equal to m to avoid collision.

To solve these problems, Contrabass implements simultaneous

channel training by developing a set of innovative PHY-level

techniques. Simultaneous channel training ensures channel

training of concurrently transmitting channels without explicit

and separate coordination. The accompanying MAC protocol

of Contrabass achieves near optimal channel utilization by

ensuring, again with no coordination, the number of concurrent

transceivers as close as m for high channel utilization. Such

a control is non-trivial because no prior information is given

about the time-varying number of contemporarily competing

transceivers, potentially located at different nodes.

We have implemented the PHY portion of Contrabass

in the GNURadio platform [8] and conducted a proof of

concept experiment (Section IV). Our experiment indicates

that Contrabass successfully decodes signals from concurrent

transmissions using its PHY protocols. Since GNURadio do

not permit an effective implementation of real-time carrier

sensing (see [9]), we implemented MAC of Contrabass and

other MIMO protocols using NS-2. Here, Contrabass and

two of existing concurrent transmission protocols, and IEEE

802.11n are tested under diverse network and traffic condi-

tions. We verify through simulation that Contrabass yields

high scalability under various traffic loads and outperforms the

existing concurrent transmission protocols. Compared to IEEE

802.11 with frame aggregation, it achieves about 60 to 70%

performance improvement with aggregated throughput under

high load and about 4x performance improvement with VoIP

traffic. The performance results are presented in Section V.

II. RELATED WORK

[3], [4] perform simultaneous transmission of RTS and

CTS, while [6], [7], [10], [11] use separate staggered RTS

and CTS message exchange. When simultaneous RTS and

CTS transmissions are allowed, either the perfect knowledge

of CSI [3] or use of spreading coding [4] is assumed for the

decoding of the overlapped control message signals. While the

assumption on the perfect knowledge of CSI is unrealistic,

use of spreading coding incurs significant overhead because

RTS and CTS are transmitted at a low data rate and spreading

each symbol consumes too much channel resource. Although

Contrabass also uses PN-sequence for channel training, its use

is limited to training sequences (about 31 symbols). On the

other hand, encoding the entire frames (typically 14 bytes)

of RTS and CTS incurs too high overhead (assuming 8

symbols/bit spreading factor, 1792 symbols (14×2×8×8)).

The existing protocols also differ in the scheduling algo-

rithms that select concurrently activated links in the second

phase. This is based on various factors such as traffic demands

and diversity gains which are gathered using the control

messages. While some protocols [6], [7], [10], [11] limit the

degree of concurrency, [4] [3] propose optimal scheduling

algorithms that fully exploit both spatial gains, array and

diversity gains. However, most of these scheduling algorithms

require complicated computations at the time scale of per-

packet transmissions.

III. CONTRABASS

In this section, we present our protocol, called Contrabass

that implements coordination-free concurrent transmissions.

Contrabass consists of PHY and MAC components.

A. Assumptions and Definitions

Each node is assumed to have m antennas. We refer to an

antenna and its corresponding transceiver as a transmitter. The

m different transmitters in concurrent transmissions may or

may not belong to the same node. A transmitter is active if it

has a packet to transmit. We define a channel to be the wireless

link between a transmitting antenna and a receiving antenna.

There are n active transmitters in the same interference range

and a subset of transmitters transmit simultaneously. We

assume that the number of concurrently transmitting nodes is

equal to ntx. A node cannot receive and transmit at the same

time (i.e., half-duplex node).

Consider from a perspective of a receiver receiving signals

throughm antennas. Let us denote the channel coefficient from

transmitter i to the jth antenna of the receiver as hi,j . Then the

MIMO channel is described as y = Hx+w where y is an m

dimensional receive vector, x is an ntx dimensional transmit

vector, w is an m dimensional additive white Gaussian noise

vector and H is the m× ntx channel response matrix.

Given a rich scattered environment such as Rayleigh fad-

ing channel, wireless signals experience diverse paths to

the destination and the channel coefficients become linearly

independent from each other. With ntx ≤ m, it is possible for

a receiver to recover the original input vector x. Normally a

channel filter is built for the process. The linear channel filter

W is an ntx × m matrix such that x̂ = Wy where x̂ is the

estimation of the original input vector x by the receiver. The

receiver must estimate all channels of ntx transmitters through

channel training in order to obtain W .

B. Physical Layer Protocol

Contrabass implements simultaneous channel training by

embedding a unique training sequence in the preamble of each

1135

data packet. We perform a set of PHY-level signal process-

ing techniques to implement simultaneous training using the

training sequences. A receiver performs RLS (recursive least

squares) filtering on the received signal (containing the train-

ing sequences super-imposed together through simultaneous

transmission) to create a channel filter for a receiver without

explicitly and separately estimating all the contributing inter-

fering channels. Since in concurrent transmission, it is possible

that multiple data packets are transmitted to the same receiver,

a receiver needs to build multiple channel filters, each tuned

to the channel state from each contributing transmitter. To

enable this, we use two additional signal processing techniques

called RIC (random index correlation) and SIC (successive

interference cancelation). RIC is used to identify the number

of concurrent transmitters to that receiver and extract their

training sequences. Since multiple transmitters might be lo-

cated at different distances from the receiver, received signals

may have different powers. This is commonly called the near-

far problem. SIC is applied to to enhance the performance

of training sequence extraction even under differing received

powers of multiple signals. With exception of RIC, RLS and

SIC are previously developed [12]–[14]. Our key contribution

in the PHY layer is the innovative combination of these

techniques to enable simultaneous channel training without

coordination.

1) Training Sequence: In wireless communication, training

sequences (TS) are commonly used for time and frequency

synchronization and channel estimation. Typically TS is em-

bedded in the preamble of each data packet. In Contrabass,

to enable simultaneous channel training, we use training

sequences with low cross correlation. For channel training,

a receiver needs to know in advance the TS embedded in

received frames. There are two choices of training sequences

that a transmitter embeds in its transmitted frame to a receiver.

The first choice is for a transmitter to compose a unique TS

and embeds it into the frame. This requires its receiver to

know in advance which transmitter is transmitting to it. The

second choice, adopted by Contrabass, is that each receiver

generates its unique TS from a well-known unique ID such as

its MAC address. Since a transmitter knows the MAC address

of its receiver, it can also generate and embed the TS of the

receiver in the preamble of its frame. The receiver simply

needs to match the received training sequences with its own.

One issue with this approach is that concurrent transmitters

sending to the same receiver will use the same TS. In order

to distinguish these overlapped TS’ without coordination, we

devise a novel technique called RIC (described further next

section) where each Contrabass transmitter varies its starting

index of TS randomly. A Contrabass receiver correlates its

TS with received signals by rotating the starting index of its

TS. To maximize the chance of identifying the TS’ of those

concurrent transmitters, we use training sequences with very

low auto-correlation. As a result, we adopt gold sequences

which have very low cross/auto-correlation [15].

2) Random Index Correlation: Contrabass uses 31 symbol

gold sequences for channel training. Denote by f(i) the

symbol at the ith position of a TS. Each transmitter picks

a random index j from 0 to 30 and use the index as a

starting position to transmit to its receiver in the following

way. The symbols are rotated by j so that f(i) is placed at

(i+ j) mod 31. This rotated TS is embedded in the preamble.

Suppose that ntx transmitters simultaneously send their

frames. By the MAC protocols, all these frames are synchro-

nized and exactly overlapped. The receiver performs a cross-

correlation function C(t) by performing a convolution starting

from index 0 to index 30.

C(t) =

30
∑

k=0

f∗((t+ k) mod l) · g(k), (1)

where f∗ is the complex conjugate of the training symbol

and g is the received symbol such that g(k) = h1x1,k +
· · ·+ hntx

xntx,k, where hi is the channel coefficient between

transmitter i and the receiver, and xi,k is the kth symbol of

the training sequence received from transmitter i.

RIC finds index s such that C(s) = |max0,30 C(t)|. When

a number s coincides the starting index of a training sequence

from a certain transmitter, say 1, the correlation value will be

C(s) =

∣

∣

∣

∣

∣

h1

30
∑

k

|x1,k|
2 + · · ·+ hntx

30
∑

k

x1,k · xntx,k

∣

∣

∣

∣

∣

,

where x̄ is the complex conjugate of the symbol x. With the TS

having a pseudo orthogonality, it will have
∑

i6=1,k x1,k ·xi,k ≃
0. Hence, we will have the correlation peak of

C(s) ≃ |h1|
30
∑

k

|x1,k|
2. (2)

3) Recursive Least Squares Filtering: RLS filtering [12]

trains a channel filter W directly from the input signal without

explicitly estimating CSI and CVM (covariance matrix) using

the following iterative algorithm.

Wi = Wi−1 + (xi −Wi−1yi)y
∗
i Pi,

Pi = λ−1[Pi−1 −
λ−1Pi−1yiy

∗
i Pi−1

1 + λ−1y∗i Pi−1yi
].

xi indicates an m-dimensional vector defined as

[s1s2 . . . sntx
0 . . . 0]T where sj represent the ith symbol

of the TS from the jth concurrent transmitter and ntx is

the number of the received frames to the same receiver.

Therefore, by using RLS filter, up to m frames can be

decoded and unknown interferences from other concurrently

transmitting nodes to other receivers can also be effectively

suppressed at the same time. The initial value of Pi is given

as P−1 = ǫ−1I where ǫ is a very small constant. λ is a

forgetting factor, 0 ≪ λ < 1. Wi converges iteratively to W

with an error feedback xi − Wi−1yi without the need for

estimating H and its covariance. RLS is known to have a

SNR performance same with MMSE [16].

4) Successive Interference Cancelation: After a training

sequence of a frame is correctly identified and used for channel

training via RIC and RLS filtering, a Contrabass receiver

cancels out the contribution of that training sequence from

the received signals in the following way. First, the average

1136

channel coefficient of the decoded symbols, h̄, is obtained (e.g.

h1 in Eq. (2)). Then, the recovered symbols in the TS and the

data frame are multiplied by h̄ and subtracted from the mixed

signals. On the resulting signals, Contrabass performs RIC and

RLS to extract the second packet. This process is repeated

until the extracted payload does not pass the integrity test or

the receiver could not find a correlation peak.

In general, SIC is effective only when the signal strength

ratio among interfering frames is large enough for the demod-

ulator to decode symbols. This requirement interferes with rate

adaptation [17]. In our protocol, this problem does not occur

since SIC is applied only for training sequences and training

sequences are always transmitted at a fixed rate. In addition,

a receiver already knows its own training sequence which

will be subtracted from the original signals. After finding the

starting index using RIC, indicated by the correlation peak

with the known TS, the known TS can be subtracted from the

received signals. Since no decoding is involved in this stage,

the signal strength ratio among interfering frames does not

need to be large. Furthermore, since SIC is applied only to

TS, it consumes very little computational resource. Note that

the data portion of a frame is decoded using the channel filter

obtained from RLS filtering without using SIC.

C. MAC Layer Protocol

The MAC protocol of Contrabass needs to achieve the

following goals. (1) Contrabass requires every concurrent

transmitter within an interference range to transmit at the same

time and (2) the total number of concurrent transmitters must

be less than or equal to m for collision avoidance, but as close

to m as possible for high channel utilization.

To achieve the first goal, Contrabass adopts CSMA where

each active transmitter performs carrier-sensing before trans-

mission. After the medium becomes idle, each node waits for

a fixed time interval (typically called DIFS in IEEE 802.11

standard). This ensures that all the concurrent transmitters

start their transmission right after the DIFS and no new

transmission can start in the middle of the other concurrent

transmissions in the same range. As interference ranges are

different from sensing ranges, this does not necessarily guar-

antee simultaneous transmission within an interference range.

However, this can be considered as a good approximation.

Note, if there is a hidden terminal outside the sensing range,

it is possible that a new transmission may start in the middle

of the other concurrent transmissions. Note that the same

problem may also occur with IEEE 802.11n. A conventional

technique to handle hidden terminal is to use RTS and CTS.

But in practice, RTS and CTS are not commonly used because

of their overhead. Furthermore, there are studies indicating

that hidden terminals do not frequently occur [18]. If hidden

terminals happen, their impact is no worse in Contrabass than

in IEEE 802.11n without RTS and CTS.

At each time of transmission, an active transmitter transmits

a new frame with a probability τ . Fig. 1 illustrates the

basic structure of Contrabass MAC. To achieve the second

goal, Contrabass adjusts τ in a way that the probability of

successful transmissions is maximized. In this section, we first

Fig. 1. The basic media access mechanism of Contrabass MAC

mathematically derive the optimal transmission probability,

τopt, that maximizes the success probability given n. Second,

we discuss a binary search technique that adjusts τ based on

the recent history of transmission successes and idle slots so

that it quickly converges to τopt without the knowledge of n.

After the successful receptions, ACK frames are sent back

to their transmitters. As the duration of packet transmissions

could vary due to different payload sizes and data rates, all

the receivers wait until the last data transmission finishes. If

the channel becomes idle again, within a pre-defined time

interval called short inter-frame space (SIFS), all the suc-

cessful receivers send ACK frames back to their original

transmitters. Those receivers that receive multiple frames send

ACK frames using their multiple transceivers. To ensure that

the transmitters decode the ACK frames correctly, the receivers

attach the unique training sequence that is generated from

the MAC addresses of the transmitters. A receiver sends the

training sequence again starting from a random index so that

the transmitter can decode concurrently received ACK frames.

1) Optimal Transmission Probability: Suppose that the

number of active transmitters n is known. Recall that the trans-

mission is successful only when the number of simultaneous

transmissions within the interference range is less than or equal

to m. Given that the transmitters transmit their frames with

probability τ , we can express the probability of successful

transmission, pS by adding the probabilities of all the events

that the number of concurrent transmissions is less than or

equal to m:

pS =

m
∑

i=1

(

n

i

)

τ i(1 − τ)n−i, (3)

pI = (1 − τ)n, (4)

pC = 1− pS − pI . (5)

As in Fig. 2(b), the transmission success probability is a

concave function of τ . We can find the τopt by finding τ that

makes the first derivation of Eq. (5) 0. The first derivation of

Eq. (5) with respect to τ gives

p′S =

m
∑

i=1

(

n

i

)

(iτ i−1(1− τ)n−i −

(n− i)τ i(1− τ)n−i−1). (6)

We can observe that the second term iteratively cancels out

the first term in Eq. (6). Now, Eq. (6) can be simplified into

p′S = n(1− τ)n−1 − n

(

n− 1

m

)

τm(1− τ)n−m−1.

1137

Finally, by finding τ that renders p′S to 0, we easily obtain

the optimal transmission probability τopt that maximizes Eq.

(5):

τopt =
1

m

√

(

n−1

m

)

+ 1
. (7)

2) Binary Search Algorithm: In this section, we present a

binary search technique that dynamically adjusts τ to converge

to τopt for an unknown n.

The intuitions of the algorithm start from two observations.

First, Fig. 2 (a) shows the values of τopt as n changes. It

also plots the corresponding success, slot idle and collision

probabilities under a given τopt value which are denoted by

p
opt
S , p

opt
I and p

opt
C , respectively. These probabilities remain

almost constant for large n. This property allows each trans-

mitter to adjust its τ so that its observed numbers of idle

slots, transmission success and collision approximates those

observed when τ is equal to τopt. Second, in Fig. 2, we

observe that pI decreases and pC increases monotonically as

τ increases. By observing pI and pC , we can tell whether τ

is larger or smaller than τopt. τ is increased when pI is larger

than p
opt
I and decreased when pC becomes larger than p

opt
C .

Note that p
opt
I and p

opt
C are known from Fig. 2 as their values

are fixed independent of n for a sufficiently large n.

0 20 40 60
0

0.2

0.4

0.6

0.8

1

Number of Transmitters

P
ro

b
a
b
ili

ty

p
S

p
I

p
C

τ
opt

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

τ

P
ro

b
a
b
ili

ty

p
S

p
I

p
C

Fig. 2. (a) When τopt is applied, pI , pS and pC is almost constant with
different number of transmitters. (b) pI and the pC are used for estimating
the current level of transmission attempt probability as they are monotonic
functions, respectively.

In Contrabass, a node observes the results of any transmis-

sions occurring within its carrier sensing range by detecting

an ACK frame. If a data frame is followed by an ACK

frame, it can be deduced that the transmission was successful.

Otherwise, collision has occurred. Although a node may not

participate in the transmission, it still overhears the channel to

see if an ACK frame is transmitted.

Each node records the sequence of past N events,

e0, e1, . . . , eN−1 that it has observed, in a reverse chronolog-

ical order (with e0 being the most recent). We call this an

event window. There are three types of events: idle, collision

and success. We assign event values 1, 0 and -1 to each idle,

success and collision events respectively and E is a weighted

moving average of event values: E =
∑N−1

k=0
λk ·v(ek) where

λ is a forgetting weight < 1 and v(ek) is the value of the

currently observed event. E gets larger as a node sees more

idle events recently, and smaller as it sees more collision events

recently. E summarizes the idleness of the channel. If E is

larger than a threshold Ti, we say that the channel is in the

τ ← τinit; τmax ← 0; j ← 0

loop
if E ≥ Ti then

if τ + δmin ≤ τmax then
{Binary Search Phase}
τ ← τ+τmax

2

else
{Exponential Increase Phase}
τ ← α · 2j + τ ; j ← j + 1

end if
else

if E ≤ Tc then
{Multiplicative Decrease}
τmax ← τ ; τ ← β · τi; j ← 1

end if
end if

end loop

Fig. 3. Transmission probability control algorithm

idle state and if it is less than Tc, then the collision state.

Note that Ti (resp., Tc) is set to the value of E when the most

recent N · poptI (resp., N · poptC) events in the event window

are idle (collision) and the remaining events are success. In

the idle state, τ must be increased and in the collision state,

τ must be decreased.

To guarantee fast convergence to τopt, we use a binary

search algorithm based on E. Suppose that when a node

determines E < Tc, its current value of τ is assigned to τmax.

It is certain that τopt should be below τmax. The node reduces

τ by a multiplicative amount: τ = β · τ where β < 1 is a

decreasing factor. If the node finds that E > Ti, then the target

transmission probability (τopt) must be somewhere in between

τmax and current τ . So the node performs binary search by

setting its τ to τ+τmax

2
. When τ becomes very close to τmax

(the difference is less than a small constant, δmin), it implies

that τmax is less than τopt. The node starts probing for a new

value of τmax by exponentially increasing τ until the state

changes to collision. A similar control algorithm is used in a

recent version of TCP called, BIC [19], and proven to have

fast and stable convergence to the target value. Fig. 3 shows

the algorithm specification.

3) Dynamic Adjustment of Active Transmitters: For the

flexibility to adapt to various network topologies and con-

ditions, a transmitting node may adjust the number of its

transmitters to use for packet transmission. If a node finds

the channel is not too busy which can be determined by a

large value of τ , it can use more transmitters for transmission.

Otherwise, it may use less transmitters. We use a simple

algorithm for this. Each node maintains a single transmission

queue of packets for each transmitter which becomes active

with a random uniform probability τ . An active transmitter

takes a packet from the transmission queue and transmits the

packet. Therefore, when the channel is mostly idle (with large

τ) and enough packets are in the transmission queue, the node

performs exclusive transmissions.

D. Synchronization

Decoding concurrent frames at a receiver has two practical

challenges; timing mismatch and carrier frequency offset. The

former is incurred because of random hardware delays at

1138

senders. It results in the misalignment of frames. Sender

synchronization techniques such as [20] can solve the problem.

The different distances to the receiver is another source of

the timing mismatch. However, if amount of the mismatch

is smaller than the guard time of an OFDM symbol, it

does not degrade the signal detection performance [21], [22].

For example, the guard time specified in the IEEE 802.11n

specification is set to 0.8µs which is sufficiently large to

handle any mismatch occurring within a range of 250m. Since

most ad hoc network scenarios consider an interference area

within a radius of 250m [23], time synchronization between

concurrent data streams can be easily guaranteed. The timing

mismatch can be also relaxed by use of OFDM cyclic prefix.

The latter can be solved by two different methods. First, a

receiver broadcasts a control packet for transmitters to force

them adjust the carrier frequency offsets (CFO) [24]. However,

this method cannot be used for ad hoc networks because

two different transmissions destined to different receivers do

not necessarily have the same offset. Second, multiple CFOs

from different transmitters can be effectively compensated at

a receiver without any control messages by using specialized

training structures and additional computations such as ML

estimation or PN sequence despreading at the receiver [25],

[26]. In Contrabass, gold sequences are used for simultane-

ous channel training and they are also useful for estimating

multiple CFOs. Therefore, we adopt the second method for

frequency synchronization.

IV. GNU RADIO EXPERIMENT

We implement the PHY protocol of Contrabass on the

GNURadio platform [8]. Our purpose is to verify that our

protocol can be implemented in real systems and can correctly

function in a real signal scattering environment. The Universal

Software Radio Peripheral (USRP) is used for the evaluation

[27]. We form a MIMO link with 4 nodes, each containing

two RFX2400 daughter boards operating in the 2.5 GHz range.

The experiment is conducted indoor and the setup is shown in

Figure 4. Two nodes (3 and 4 in the figure) are transmitting

and the other two nodes (1 and 2) are acting as receivers. The

two transmitting nodes use only one antenna for transmission,

but the receiving nodes use both antennas for receiving.

We use the binary phase shift keying (BPSK) for modulation

and use the default GNURadio configuration for DAC (128e6
samples/s), interpolation rate (128), ADC (64e6 samples/s).

We use a 32-bit preamble (31 gold training sequence plus

one bit padding), and a 1000 byte payload and 32-bit CRC.

As the channel state might drift in the middle of a frame

transmission, we perform a periodic channel matrix adjustment

by inserting a pilot sequence (the same gold sequence as in

the preamble) in every 64 bytes of the payload. At the receiver

side, the wave form from the PHY layer is dumped to a log

file in the PC, connected via USB interface to the receiving

GNURadio nodes. This log file is analyzed offline using

MATLAB where we perform timing synchronization, channel

training, interference cancelation and payload decoding. Since

GNURadio cannot implement carrier sensing without modi-

fication in FPGA, we did not implement a real-time MAC

protocol, but instead, we force both transmitters to transmit at

the same time.

Fig. 4. Contrabass GNURadio experiment setup. Two nodes are set up to
be transmitters and the other two nodes are receivers. Each node have two
antennas and a transmitter uses one antenna for transmission and a receiver
uses both antennas for receiving. A PC connected to radios via USB interfaces
controls the experiment, and receives the dumped wave forms from the radio
and performs offline signal processes.

A. MIMO Decoding and Interference Cancelation

In this experiment, we measure the performance of Contra-

bass under two different scenarios. We first test the scenario

where two different transmitters send frames to the same

receiver with two antennas (nodes 3 and 4 sending to node 1 in

Figure 4). This scenario is called MIMO decoding scenario. In

this scenario, the receiver builds two different channel filters

using RIC, RLS and SIC. We also test another scenario where

two transmitters send to two different receivers (nodes 3 and

4 sending to nodes 1 and 2, respectively). This scenario is

called interference cancelation scenario. In this scenario, using

RLS, a receiver builds only one channel filter for the signals

coming from the intended transmitter and treats the signals

from the other transmitter as unknown interference. In both

experiments, each transmitter sends frames 500 times, each

with a different transmission power. We measure the bit error

rates (BER) over received SNR. Figure 5 shows the result of

the experiment. We compare the performance of Contrabass

under these scenarios with the performance of a single stream

with one or two receiving antennas. The performance of two

streams to one receiving antenna is used as the baseline which

shows that all the frames are un-decodable (with 0.5 BER).

Our experiment is performed without any channel coding and

1% BER in an un-coded system is considered acceptable.

The performance of MIMO decoding is comparable to the

single streaming performance with one or two antennas up

to 12 dB SNR. For SNR higher than 12 dB, its performance

drifts a little away from the single stream/two antenna case,

but still remains comparable to the one antenna case. The

performance of interference cancelation is worse than that

of MIMO decoding because it uses only one channel filter

treating the other signal (from node 4) as interference and

performs interference suppression. But its performance is still

within acceptable ranges compared to the performance of

single stream cases.

B. Timing Synchronization

We measure the capability of MIMO decoding under timing

differences when two transmitters send from different dis-

tances to a receiver. We vary the amount of timing offsets

1139

10
-5

10
-4

10
-3

10
-2

10
-1

 3 6 9 12 15

BE
R

received SNR (dB)

MIMO decoding
interference cancellation

single stream received with 1 antennas
single stream received with 2 antennas
two streams received with 1 antennas

Fig. 5. BER performance of MIMO decoding and interference cancelation.

manually by time-shifting the wave form at one of the trans-

mitters. The receiver receives the superimposed symbols as

shown in Figure 6 and oversamples the incoming symbols 7

times instead of using 2 times to improve the performance of

MIMO decoding under timing difference. In this experiment,

we measure the success ratio of MIMO decoding - when a

frame is received without any CRC error, we say it is a success.

We verify that with 1.14µs offset, the MIMO decoding of

Contrabass achieves about 90% success rate and the success

rate drops to 70% with 2.28µs offset. 1.14µs offset is possible
when the two transmitters (after synchronizing at the boundary

of channel idle through carrier sensing) are 342 meters apart.

These results indicate that Contrabass is able to handle a

reasonable amount of timing errors arising from transmitters

at different distances in rich scattering environments.

5 10 15 20 25
−3

−2

−1

0

1

2

3

4

time (µs)

si
gn

al
 a

m
pl

itu
de

signal 1

signal 2

sum of signals

Fig. 6. The receiver performs oversampling and perform the PHY takes the
optimal sampling index to resolve the timing error of multiple frames.

V. SIMULATION

A. Simulation Setup

GNU radio does not permit effective implementation of real-

time carrier sensing [9]. Thus, for the network level evalua-

tion, we have implemented Contrabass and several existing

MAC protocols in NS-2. Among the concurrent transmission

protocols, we choose DMUMSS [4] and SPACE-MAC [6]

for the comparison. DMUMSS is the most recent distributed

scheduling-based protocol that has been shown to outperform

many prior protocols. When implementing DMUMSS, we use

8-bit spreading coding for the concurrent transmissions of

RTS and CTS. DMUMSS assumes that a node has the full

knowledge of the active neighbors and their traffic load prior

to each transmission. Hence we allow DMUMSS to exchange

Hello messages and to obtain the information. SPACE-MAC

is a unique protocol that allows concurrent transmissions to

occur in the middle of other on-going transmissions using

precoding technique. We modified basic CSMA/CA such that

nodes can transmit and receive packets during transmission of

Number of antennas 4

Basic data rate 6 Mbps

RLS training sequence length 31 symbols

MMSE training sequence length 4 symbols

Maximum aggregated frame size 8000 bytes

RTS CTS 14 bytes

Routing protocol AODV

Size of area 100m x 100m

Transmission range 30m

Data transmission rate 90 Mbps for concurrent tx
180 Mbps for exclusive tx

Channel Rayleigh fading

TABLE I
SIMULATION PARAMETERS

other nodes. We also implement the MAC feature of IEEE

802.11n, adding the frame aggregation technique (A-MSDU)

to the existing NS-2 implementation of IEEE 802.11. In our

implementation, a node picks several packets with the same

destination from its transmission queue. Then it aggregates the

packets into one single frame. The receiver returns a block

ACK for the successfully decoded packets.

In most experiments, we populate 100 nodes within a square

of 100 m by 100 m area. We set the transmission power such

that communication range is 30 meters in the Rayleigh fading

channel. In this scenario, hidden terminals are possible. The

nodes operate in the ad hoc mode and AODV is used for

routing [28]. We derive the data transmission rate of MIMO

nodes from [29]. The data rate for concurrent transmission is

set to 90 Mbps per antenna and 180 Mbps in total for exclusive

transmissions. The simulation parameters are listed in Table I

and they are derived from the IEEE 801.n standard [1].

We test Contrabass under three types of traffic: web, FTP

and VoIP. For the web traffic, we implement a web user model

in which each user sends an HTTP request and the server

returns a response. After receiving the response, the user sleeps

for a random think time. We use the data from a measurement

study [30] to select the realistic input distributions. The request

size is a bimodal distribution of 100 bytes for 75% and 1500

bytes for 25%. We use Pareto distributions for response file

sizes and think time. We set the mean file size to 8800

and the slope to 1.2. When the FTP traffic is used, a node

continually downloads a large file from randomly selected

users. Both the web and the FTP models run on top of TCP. A

VoIP source models the pulse-code modulation (PCM) scheme

with sending rate of 64 Kbps and 128 byte packets. We

construct a VoIP user model where each user makes a call

to a random receiver. The call duration follows a lognormal

distribution whose parameters are set following data from a

VoIP measurement study [31]. After the call terminates, the

user waits for a random think time and again makes another

call to a random receiver. VoIP data are always bi-directional.

VoIP traffic is delivered using UDP.

B. Performance Evaluation

The web traffic result is plotted in Figure 7 (a). We adjust

the mean think time of each user from 0.5 seconds to 0.1

seconds to vary the web traffic load. Contrabass shows very

good scalability maintaining its performance with high offered

load. The reason is that Contrabass effectively amortizes

protocol overhead by minimizing control overhead. The other

1140

 10

 20

 30

 40

 50

 60

 0.1 0.2 0.3 0.4 0.5

ag
gr

eg
at

e
th

ro
ug

hp
ut

 (M
bp

s)

mean think time

Contrabass
DMUMSS

SPACEMAC
802.11n w/ aggr

802.11n w/o aggr

 10

 20

 30

 40

 50

 60

 70

 40 80 120 160 200

ag
gr

eg
at

e
th

ro
ug

hp
ut

 (M
bp

s)

number of sessions

Contrabass
DMUMSS

SPACEMAC
802.11n w/ aggr

802.11n w/o aggr

Fig. 7. The aggregate network throughput when the traffic load is varied.
(a) Web traffic. (b) FTP traffic

 0.2

 0.4

 0.6

 0.8

 1

 40 80 120 160 200

tra
ns

m
is

si
on

 s
uc

ce
ss

 p
ro

ba
bi

lit
y

number of sessions

Contrabass
802.11n

Fig. 8. Transmission success probability of Contrabass and 802.11n.

concurrent transmission protocols incur significant control

overhead for the coordination. While 802.11n shows very good

throughput under low traffic load, as the traffic load increases,

its performance drops because of contention.

Figure 7 (b) shows the aggregate throughput when the FTP

traffic is used. Contrabass again outperforms other protocols.

Unlike the web traffic scenario where the traffic is very bursty

and hence the contention between the transmitters is naturally

mitigated, all the nodes keep sending packets with FTP traffic.

Note that the performance of Contrabass is rarely affected

by the increased contention. The reason is that Contrabass

has a very high transmission success probability even with

the large number of active transmitters. To illustrate this

point, Figure 8 shows the transmission success probability of

protocols. The transmission success of Contrabass is around

80% even when the number of transmitters is 200. This

indicates that the transmission probability control algorithm of

Contrabass works very effectively. On the other hand, 802.11n

protocol experience severe performance degradation due to

increased packet collisions.

The performance of SPACE-MAC and DMUMSS is almost

independent of contention since these protocol exchange con-

trol messages to keep the total number of subsequent data

transmissions under the limit of receiving antenna numbers.

Hence all transmissions are successful unless channel error

occurs due to fading. But their performance is poor because

of the heavy control overhead incurred by the RTS/CTS

 0

 2

 4

 6

 8

 10

 12

 14

 16

 40 80 120 160 200

ag
gr

eg
at

e
go

od
pu

t (
M

bp
s)

number of sessions

Contrabass
DMUMSS

SPACEMAC
802.11n w/ aggr

802.11n w/o aggr

 0

 10

 20

 30

 40

 50

 40 80 120 160 200

ag
gr

eg
at

e
th

ro
ug

hp
ut

 (M
bp

s)

number of sessions

Contrabass
DMUMSS

SPACEMAC
802.11n w/ aggr

802.11n w/o aggr

Fig. 9. The result of the VoIP experiment. (a) VoIP goodput. (b) Aggregated
throughput of the background FTP traffic

message exchanges. DMUMSS encodes these messages with

spreading codes and incurs about 224 byte overhead for the

control messages exchange. Moreover these control messages

are sent at the basic rate. Contrabass uses the basic rate for the

transmissions of preamble and ACK. SPACE-MAC does not

incur as much overhead. But its maximum possible concurrent

transmissions are only two packets regardless of the number

of receiving antennas.

We test VoIP performance under loaded conditions, adding

FTP as the background traffic. The number of VoIP sessions is

varied. The goodput of VoIP traffic measures the throughput of

packets received within deadline (200ms in PCM) after their

departure from the application. Figure 9 (a) shows the VoIP

goodput. The performance of Contrabass scales extremely well

to the traffic load. While the performance of other protocols

begins to drop as soon as the load increases, Contrabass

continues to increase its goodput until the number of sessions

reaches 160. This indicates that Contrabass effectively utilizes

the remaining capacity without much overhead. Both back-

ground and VoIP traffic under Contrabass achieve much higher

throughput and goodput than the other protocols. The high

goodput of VoIP also comes from low delay arising from low

packet loss rates due to collision and absence of any control

messages (e.g., RTS and CTS). We measured the average delay

of successfully delivered packets in this scenario in Figure 10.

The 802.11n frame aggregation technique does not effec-

tively improve the performance of VoIP traffic. This is because

VoIP data arrive at a fixed interval and there are not many

packets to aggregate at each instance of transmission. Since

VoIP data and background traffic are likely to be destined to

different receivers, aggregation is not activated most of time.

In this simulation, an 802.11n node aggregated average 4.7

packets when the number of active sessions is 40 but it dropped

to 1.0 with 200 active sessions. Since aggregation cannot

function, the control overhead per VoIP packet (Block ACKs,

MAC layer retransmissions, SIFS and DIFS) is fully accrued.

1141

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 40 80 120 160 200

de
la

y
(s

)

number of sessions

Contrabass
DMUMSS

SPACEMAC
802.11n w/ aggr

802.11n w/o aggr

Fig. 10. Average packet delay of protocols.

VoIP packets are very small and the relative control overhead

is substantially large. This effect is also clearly visible from the

DMUMSS performance as it has the largest control overhead.

In Figure 9 (b), the aggregate throughput of the background

FTP traffic is plotted. It is well known that CBR traffics harm

the performance of TCP based applications [32]. The reason

is that TCP senders continuously reduce their c ongestion

window sizes when the packet is lost, while CBR traffic main-

tains its sending rate, finally filling up the network capacity.

Contrabass experiences performance degradation as well, but

the problem is considerably alleviated as TCP packet loss rate

is much lower than using the other protocols.

VI. CONCLUSION

Contrabass implements the first-to-date open-loop based

MIMO PHY/MAC protocol for concurrent transmissions. Its

operation is tuned toward ad hoc network environments. It

employs an innovative combination of novel and existing PHY

layer MIMO techniques to implement simultaneous channel

training for effective interference cancelation and MIMO de-

coding for concurrent transmission. This results in elimination

and minimization of coordination and control overhead. The

MAC protocol of Contrabass harmonizes with the PHY layer

protocols to implement the required synchronization for si-

multaneous channel training. More important, although being

completely open-loop with no handshaking such as RTS and

CTS, it can effectively adjust its transmission probability to

achieve near-optimal throughput performance with low delay.

Our design choices are deliberately made to enable practical

implementation which is demonstrated through GNURadio

implementation and experimentation. Being open-loop, we

admit that Contrabass might be susceptible to hidden terminal

problems, but this is a deliberate design choice considering the

tradeoff between overhead and performance degradation due

to hidden terminals. It is known that hidden terminals are not

very common and even in the IEEE 802.11 system, RTS/CTS

are commonly turned off.

Acknowledgement : This work is supported by NSF under

grant CNS-0910868 and CNS-1016216.

REFERENCES

[1] “IEEE standard 802.11n,” Nov 2009.
[2] “Fcc 47 cfr ch. i (10105 edition),” http://www.fcc.gov.
[3] K. Sundaresan, R. Sivakumar, M. Ingram, and T.-Y. Chang, “A fair

medium access control protocol for ad-hoc networks with mimo links,”
in Proc. of IEEE INFOCOM, 2004.

[4] S. Chu and X. Wang, “Opportunistic and cooperative spatial multiplex-
ing in mimo ad hoc networks,” in Proc. of MobiHoc, May 2008.

[5] Mundarath, J. Ramanathan, P., V. Veen, and B.D., “Nullhoc : a mac
protocol for adaptive antenna array based wireless ad hoc networks
in multipath environments,” in Proc. of Global Telecommunications
Conference, 2004.

[6] J.-S. Park, A. Nandan, M. Gerla, and H. Lee, “SPACE-MAC: Enabling
spatial reuse using mimo channel-aware mac,” in Proc. of IEEE ICC,
2005.

[7] P.Casari, M. Levorato, and M. Zorzi, “DSMA: an access method for
mimo ad hoc networks based on distributed scheduling,” in Proc. of
ACM IWCMC, 2006.

[8] “GNURadio - the development toolkit for software-defined radio,”
http://gnuradio.org.

[9] G. Nychis, T. Hottelier, Z. Yang, S. Seshan, and P. Steenkiste, “Enabling
mac protocol implementations on software-defined radios,” in Proc. of
NSDI, April 2009.

[10] M. Park, R. W. H. Jr., and S. M. Nettles, “Improving throughput and
fairness of mimo ad hoc networks using antenna selection diversity,” in
Proc. of IEEE Globecom, 2004.

[11] T. Tang, M. Park, R. W. H. Jr., and S. M. Nettles, “A joint mimo-ofdm
transceiver and mac design for mobile ad hoc networking,” in Proc. of
International Workshop on Wireless Ad-Hoc Networks, 2004.

[12] S. Haykin, Adaptive Filter Theory, 4th Ed. Prentice Hall, 2001.
[13] D. Halperin, T. Anderson, and D. Wetherall, “Taking the sting out of

carrier sense: Interference cancellation for wireless lans,” in Proc. of
ACM MobiCom, 2008.

[14] P. Patel and J. Holtzman, “Analysis of a simple successive interference
cancellation scheme in an ds/cdma system,” IEEE Journal on Selected
Areas in Communications, 1994.

[15] R. Gold, “Optimal binary sequences for spread spectrum multiplexing,”
IEEE Transactions on Information Theory, 1967.

[16] J. Wang and B. Daneshrad, “A comparative study of mimo detection
algorithms for wideband spatial multiplexing systems,” in Proc. of IEEE
Wireless Communications and Networking Conference, 2005.

[17] S. Gollakota and D. Katabi, “Zigzag decoding: Combating hidden
terminals in wireless networks,” in Proc. of ACM SigComm, 2008.

[18] G. Judd, “Using physical layer emulation to understand and improve
wireless networks,” in Ph.D Dissertation, Carnegie Mellon University,
2006.

[19] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control
(bic) for fast long-distance networks,” in Proc. of IEEE INFOCOM,
2004.

[20] H. H. Hariharan Rahul and D. Katabi, “Sourcesync: A distributed
wireless architecture for exploiting sender diversity,” in Proc. of ACM
SigComm, 2010.

[21] J. Heiskala and J. Terry, OFDM Wireless LANs: A Theoretical and
Practical Guide. SAMS Publishing, 2002.

[22] K. Fazel and S. Kaiser, Multi-Carrier and Spread Spectrum Systems.
Wiley, 2003.

[23] A. Vahdat and D. Becker, “Epidemic routing for partially-connected ad
hoc networkepidemic routing for partially-connected ad hoc networks,”
in Technical Report CS-2000-06 Duke University, 2000.

[24] E. Eraslan, V. Panchagnula, B. Daneshrad, S. Yoon, I. Rhee, and J. H.
Kim, “Signal processing techniques to enable concurrent communica-
tions in mimo enabled networks,” in Proc. of IEEE Asiloma Conference
on Signal Systems, and Computers, 2009.

[25] Y. Zeng, A. Leyman, and T.-S. Ng, “Joint semiblind frequency offset and
channel estimation for multiuser mimo-ofdm uplink,” IEEE Transactions
on Communications, 2007.

[26] Y. Wu, S. Attallah, and J. Bergmans, “Carrier frequency offset estimation
for multi-user mimo-ofdm uplink using cazac sequences,” in Proc. of
IEEE WCNC2009, 2009.

[27] “USRP - universal software radio peripheral,” http://www.ettus.com/.
[28] “RFC3561 - ad hoc on-demand distance vector (aodv) routing,” 2003.
[29] H. Jin, B. C. Jung, H. Y. Hwang, and D. K. Sung, “Performance

comparison of uplink wlans with single-user and multi-user mimo
schemes,” in Proc. of IEEE WCNC2008, 2008.

[30] B. A. Mah, “An empirical model of http network traffic,” in Proc. of
IEEE Infocom, 1997.

[31] J. GUO, F. LIU, and Z. ZHU, “Estimate the call duration distribution
parameters in gsm system based on k-l divergence method,” in Proc. of
WiCom, 2007.

[32] P. Verkaik, Y. Agarwal, R. Gupta, and A. C. Snoeren, “Softspeak:
Making voip play well in existing 802.11 deployments,” in Proc. of
NSDI, 2009.

1142

