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Abstract—We consider a new opportunistic interference align-
ment (OIA) for the K-cell multiple-input multiple-output
(MIMO) interfering multiple-access channel (IMAC) with time-
invariant channel coefficients, where each cell consists of a base
station (BS) with M antennas and N mobile stations (MSs)
having L antennas each. In this paper, we propose three OIA
techniques: antenna selection-based OIA, singular value de-
composition (SVD)-based OIA, and vector-quantized (codebook-
based) OIA. Then, their performance is analyzed in terms of user
scaling law required to achieve KS degrees-of-freedom (DoF),
where S(≤ M) denotes the number of simultaneously trans-
mitting MSs per cell. As our main result, it is shown that the
antenna selection-based OIA does not fundamentally change the
user scaling required to achieve KS DoF if L is fixed, compared
with the single-input multiple-output (SIMO) IMAC case. In
contrast, it is shown that the SVD-based OIA can greatly reduce
the required user scaling to SNR(K−1)S−L+1 through optimizing
weight vectors at each MS. Furthermore, we show that the vector-
quantized OIA can achieve the same user scaling as the SVD-
based OIA case if the codebook size is beyond a certain value.
For the vector-quantized OIA, we analyze a fundamental trade-
off between the quantization level (i.e., codebook size) and the
required user scaling.

I. INTRODUCTION

Interference management is a crucial problem in wire-
less communications. Interference alignment (IA) [1]–[7] has
emerged as a fundamental solution to achieve the optimal
degrees-of-freedoms (DoF) in interference channels (ICs). It
was shown that the DoF of IA schemes strictly surpass what is
achievable on the interference, multiple-access, and broadcast
components individually, for various scenarios: two-user X
network [2], [3], multiuser IC [1], multiuser multiple-input
multiple-output (MIMO) IC [7], and cellular IC [5], [6].
Recently, the concept of opportunistic interference alignment
(OIA) was proposed in [8], [9] for the K-cell single-input
multiple-output (SIMO) interfering multiple-access channel
(IMAC) with time-invariant channel coefficients, where each
base station (BS) has M antennas. The basic idea of OIA lies
in the utilization of multiuser diversity via opportunistic user
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scheduling for implementing the IA principle. Unlike the case
of the conventional IA schemes, the OIA scheme basically
operates with local channel state information at transmitters
(CSIT) and no time/frequency domain expansion. Further-
more, no iteration is needed prior to data transmission. The
OIA scheme, thus, operates as a decentralized manner which
does not involve joint processing among all communication
links. It was shown in [9] that the OIA scheme achieves KS
DoF if N scales faster than SNR(K−1)S in a high signal-to-
noise ratio (SNR) regime, where S(≤ M) is the number of
selected mobile stations (MSs) in each cell.

In this paper, we introduce OIA for the MIMO IMAC,
where each cell consists of a BS with M antennas and N MSs
having L antennas each. In [10], the outer bound on the DoF
in MIMO IMAC with time-invariant channel coefficients is
characterized, and necessary conditions for M and L needed
to achieve the optimal DoF are derived. However, the main
goal of the proposed MIMO OIA is to study the required user
scaling needed to achieve the target DoF of KS, which is op-
timal if S = M , for arbitrary M and L. More specifically, we
propose the following three types of OIA: antenna selection-
based OIA, singular value decomposition (SVD)-based OIA,
and vector-quantized (codebook-based) OIA.

As our main result, we analyze the scaling condition be-
tween the required number of MSs per cell, N , and the
received SNR under which KS DoF can be achieved. We show
that for the antenna selection-based OIA, the required number
of MSs, N , scales as L−1SNR(K−1)S . Thus, the required
user scaling does not fundamentally change, compared with
the SIMO IMAC case [9], if L is a constant independent
of N . For the SVD-based OIA, each MS finds the weight
vector that minimizes the leakage of interference (LIF) using
the SVD method. We show that the SVD-based OIA can
greatly reduce the required user scaling to SNR(K−1)S−L+1.
Note that since the local CSIT is assumed, information of
weight vectors at each selected MS should be sent to the
corresponding BS. Inspired by this fact, we further propose a
vector-quantized OIA in which the weight vectors are chosen
in a predefined codebook. It is shown that if the quantization
level (i.e., codebook size) scales polynomially with respect to
SNR, then the required user scaling can vary from SNR(K−1)S

to SNR(K−1)S−L+1 accordingly. This implies that there exists
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Fig. 1. MIMO IMAC with K = 2, M = 3, S = 2, and L = 2.

a fundamental trade-off between the quantization level and the
user scaling while achieving KS DoF.

Notations: C indicates the field of complex numbers. The
function f(x) defined by f(x) = ω(g(x)) implies that
limx→∞

g(x)
f(x) = 0. (·)T and (·)H denote the transpose and

the conjugate transpose, respectively.

II. SYSTEM AND CHANNEL MODELS

Let us consider the K-cell MIMO IMAC, each cell of which
consists of a BS with M antennas and N MSs, each with
L antennas. The number of MSs selected to transmit uplink
signals in each cell is denoted by S ≤ M . The case where
K = 2, M = 3, S = 2, and L = 2 is depicted in Fig. 1.

It is assumed that each selected MS transmits a single spatial
stream. To consider nontrivial cases, we assume that L < (K−
1)S +1, because all the inter-cell interference can be canceled
at the MSs otherwise. The channel matrix from the j-th MS
in the i-th cell to the k-th BS (in the k-th cell) is denoted by
H[i,j]

k ∈ CM×L. Frequency-flat fading is assumed and channel
reciprocity between uplink and downlink channels is assumed.

Without loss of generality, the indices of the selected MSs
in every cell are assumed to be (1, . . . , S). The overall DoF
is defined by

DoF = lim
SNR→∞

∑K
i=1

∑S
j=1 R[i,j]

log SNR
, (1)

where R[i,j] denotes the achievable rate for the j-th MS in the
i-th cell.

III. ACHIEVABILITY RESULTS

For completeness, we briefly review the achievability result
of OIA for SIMO IMAC. Then, we propose three OIA
techniques for MIMO IMAC and analyze their performance
in terms of DoF and the associated user scaling. In addition,
our schemes are compared with an ideal scenario where there
are no inter-cell interferences, resulting in an upper bound on
the performance.

A. Review on OIA in SIMO IMAC

In SIMO IMAC, the channel matrix H[i,j]
k becomes an M×

1 vector. For consistency with literature, let us denote this
channel vector by h[i,j]

k ∈ CM×1. From the pilot signals from
BSs (including home cell BS and neighboring cell BSs), each
MS can estimate the channel vectors h[i,j]

k , k = 1, . . . ,K,
utilizing the channel reciprocity. As in [8], [9], it is assumed
that the interference space of the k-th BS, denoted by Qk =

[qk,1, . . . ,qk,M−S ], is determined offline and is known to all
the BSs and MSs, where qk,i ∈ CM×1 is an orthonormal basis
vector.

In the OIA in SIMO IMAC, each BS opportunistically
selects a set of MSs who generate the minimum interference
to the other BSs. For computing its generating interference to
other BSs, the j-th MS in the i-th cell calculates the leakage
of interference (LIF) [8], [9], which is expressed as:

η
[i,j]
SIMO =

K∑
k=1,k ̸=i

∥∥∥Proj⊥Qk

(
h[i,j]

k

)∥∥∥2

, (2)

where Proj⊥A denotes the orthogonal projection of the basis
A. Each MS reports this metric to the associated BS, and each
BS selects S MSs with smallest LIF metrics among N MSs.

The following theorem is the main result of OIA for the
required user scaling.

Theorem 1 (Theorem 1, [9]): The OIA scheme with the
scheduling metric given in (2) and the zero-forcing (ZF) filter
at each BS achieves

DoF ≥ KS (3)

with high probability (whp) if

N = ω
(

SNR(K−1)S
)

. (4)

B. OIA for MIMO IMAC
In this subsection, the overall procedure of the proposed

OIA techniques for MIMO IMAC is presented.
The interference space of the k-th BS is denoted by Qk as

in Section III-A. Let us denote the null space of Qk as

Uk = [uk,1, . . . ,uk,S ] , null(Qk), (5)

where uk,i ∈ CM×1 is orthonormal. A simple way to
determine Qk and Uk would be choosing M − S columns
of a left or right singular matrix of any M ×M matrix as Qk

and choosing the rest of the S columns as Uk.
Let us define w[i,j] as the weight vector at the j-th MS in

the i-th cell. Then, the LIF metric is defined by

η
[i,j]
MIMO =

K∑
k=1,k ̸=i

∥∥∥Proj⊥Qk

(
H[i,j]

k w[i,j]
)∥∥∥2

(6)

=
K∑

k=1,k ̸=i

∥∥∥UH
k H[i,j]

k w[i,j]
∥∥∥2

. (7)

All the MSs report their LIF metrics to corresponding BSs.
Then, each BS selects S MSs having smallest LIF metrics
among N MSs in the cell. Subsequently, the j-th MS in the
i-th cell forwards the information on w[i,j] to the i-th BS for
decoding.

The received signal at the i-th BS is expressed as:

yi =
S∑

j=1

H[i,j]
i w[i,j]x[i,j]

︸ ︷︷ ︸
desired signal

+
K∑

k=1,k ̸=i

S∑
m=1

H[k,m]
i w[k,m]x[k,m]

︸ ︷︷ ︸
inter-cell interference

+zi, (8)
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where x[i,j] is the transmit symbol with unit power, and
zi ∈ CM×1 denotes additive noise, each element of which is
independent and identically distributed complex Gaussian with
zero mean and the variance of SNR−1. As in SIMO IMAC [8],
[9], the linear ZF detection is applied as

ri = [ri,1, . . . , ri,S ]T , Fi
HUH

i yi, (9)

Fi = [fi,1, . . . , fi,S ]

,
([

Ui
HH[i,1]

i w[i,1], . . . ,Ui
HH[i,S]

i w[i,S]
]−1

)H

.

(10)

Consequently, the achievable rate of the j-th MS in the i-th
cell, R[i,j], is given by (11) at the bottom of the next page.

In the following subsections, we consider three different
strategies to determine the weight vector w[k,m].

1) Antenna Selection-Based OIA: In the antenna selection-
based OIA, we have w[i,j] ∈ {e1, . . . , eL}, where el denotes
the l-th column of the (L × L)-dimensional identity matrix.
Let us denote the l-th column of H[i,j]

k by h[i,j]
k,l , l = 1, . . . , L.

Then, the j-th MS in the i-th cell chooses the optimal weight
vector as w[i,j]

AS = el̂(i,j), where the index l̂(i, j) is obtained
from

l̂(i, j) = arg min
1≤l≤L

K∑
k=1,k ̸=i

∥∥∥Uk
Hh[i,j]

k,l

∥∥∥2

. (12)

Then, the corresponding LIF metric is given by

η
[i,j]
AS =

K∑
k=1,k ̸=i

∥∥∥Uk
Hh[i,j]

k,l̂(i,j)

∥∥∥2

(13)

and is reported to the associated BS.
The following theorem establishes the DoF achievability of

the antenna selection-based OIA.
Theorem 2: The antenna selection-based OIA with the

scheduling metric (13) achieves

DoF ≥ KS (14)

whp if

N = ω
(
L−1SNR(K−1)S

)
. (15)

Proof: For compactness, we only provide a brief sketch
of the proof. The main difference in the proof of Theorem 2
compared to the proof of [9, Theorem 1] is that the LIF metric
of each selected MS, given by (13), can be represented as the
minimum of L independent LIF metrics in SIMO IMAC. That
is, η

[i,j]
AS is the minimum of L independent Chi-square random

variables with degrees of freedom 2(K − 1)S. Following the
footsteps of the proof of [9, Theorem 1] with this change
leads to the N scaling result given in (15). The detailed proof
is included in [11].
Thus, the antenna selection-based OIA does not fundamentally
change the user scaling if L is fixed. Note that, however, the
required user scaling is reduced if L scales polynomially with
respect to SNR.

2) SVD-Based OIA: In the SVD-based OIA, each MS finds
the optimal weight vector that minimizes its LIF metric. Let
us rewrite the LIF metric for MIMO IMAC as

η
[i,j]
SVD =

K∑
k=1,k ̸=i

∥∥∥Uk
HH[i,j]

k w[i,j]
∥∥∥2

=
∥∥∥G[i,j]w[i,j]

∥∥∥2

,

(16)

G[i,j] ,
[ (

U1
HH[i,j]

1

)T

, . . . ,
(
Ui−1

HH[i,j]
i−1

)T

,

(
Ui+1

HH[i,j]
i+1

)T

, . . . ,
(
UK

HH[i,j]
K

)T
]T

. (17)

Let us further denote the SVD of G[i,j] as

G[i,j] = Ω[i,j]Σ[i,j]V[i,j]H , (18)

where Ω[i,j] ∈ C(K−1)S×L and V[i,j] ∈ CL×L consist of
orthonormal columns, and Σ[i,j] = diag

(
σ

[i,j]
1 , . . . , σ

[i,j]
L

)
,

where σ
[i,j]
1 ≥ · · · ≥ σ

[i,j]
L . Then, it is apparent that the optimal

w[i,j] is determined as

w[i,j]
SVD = v[i,j]

L , (19)

where v[i,j]
L is the L-th column of V[i,j]. With this choice the

LIF metric is simplified to

η
[i,j]
SVD = σ

[i,j]
L

2
. (20)

Theorem 3: The proposed SVD-based OIA scheme with the
scheduling metric (20) achieves

DoF ≥ KS (21)

whp if
N = ω

(
SNR(K−1)S−L+1

)
. (22)

Proof: The SINR for the j-th MS in the i-th cell, defined
in (11), can be expressed as:

SINR[i,j] ≥ SNR/ ∥fi,j∥2

1 +
∑K

k=1,k ̸=i

∑S
m=1

∥∥∥UH
i H[k,m]

i w[k,m]
SVD

∥∥∥2

SNR
.

(23)

Thus, it is apparent that the DoF of KS is achieved if the in-

terference term
∑K

k=1,k ̸=i

∑S
m=1

∥∥∥Ui
HH[k,m]

i w[k,m]
SVD

∥∥∥2

SNR
remains smaller than ϵ for increasing SNR, where ϵ > 0 is an
arbitrary positive constant. Let us define PSVD as

PSVD , lim
SNR→∞

Pr

{
K∑

k=1,k ̸=i

S∑
m=1

∥∥∥Ui
HH[k,m]

i w[k,m]
SVD

∥∥∥2

SNR ≤ ϵ,

∀ MS j, j = 1, . . . , S,∀ BS i, i = 1 . . . ,K

}
. (24)

Then, the DoF is bounded as

DoF ≥ KS · PSVD. (25)
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When calculating this lower bound, we assumed that the DoF
of KS is achieved if the interference remains smaller than ϵ
for increasing SNR, and that zero DoF is achieved otherwise.
It is important to note that the sum of the received interference
terms that appears in (24) is equivalent to the sum of the LIF
metrics of the selected MSs. That is,

K∑
i=1

K∑
k=1,k ̸=i

S∑
m=1

∥∥∥Ui
HH[k,m]

i w[k,m]
SVD

∥∥∥2

=
K∑

i=1

S∑
j=1

η
[i,j]
SVD.

(26)

Subsequently, we exploit the fact that the LIF metric
given in (20) is the smallest eigen-value of the complex
central Wishart matrix G[i,j]HG[i,j], i.e., G[i,j]HG[i,j] ∼
CW(K−1)S(L, I) [12]. The result for the polynomial proba-
bility density function of this smallest eigenvalue derived in
[13, Theorem 4] is also used. Here, we need to choose ϵ small
enough such that ϵSNR−1

KS2 < 1 for arbitrarily large SNR. The
detailed proof is shown in [11].

3) Vector-Quantized OIA: Let us denote the codebook set
consisting of Nf elements as

Cf ,
{
c1, . . . , cNf

}
, (27)

where c1, . . . , cNf
∈ CL×1 are chosen from the L-

dimensional unit sphere. Then, the number of bits to represent
Cf is denoted as

nf = ⌈log2 Nf⌉. (28)

Each MS finds the weight vector in the codebook from

w[i,j]
VQ = arg min

1≤n≤Nf

∥∥∥G[i,j]cn

∥∥∥2

. (29)

Noting that w[i,j]
VQ with an infinitely large codebook becomes

v[i,j]
L in (19), we employ the widely-used suboptimal rule

[14]–[16], which is defined as

ŵ[i,j]
VQ = arg max1≤n≤Nf

∣∣∣∣(v[i,j]
L

)H

cn

∣∣∣∣2 . (30)

This rule is mathematically much more tractable than the
optimal rule in (29), and rapidly approaches to the original
rule in terms of the performance as Nf grows [14]–[16].

Theorem 4: The vector-quantized OIA with the weight vec-
tor given by (30) and the optimal Grassmannian codebook Cf

[14] achieve whp
DoF ≥ KS, (31)

if

N = ω

(
max

{
SNR(K−1)S−L+1+εκ ,

Nf
−(K−1)S/(L−1) · SNR(K−1)S+ε′

κ

})
, (32)

where ϵκ, ϵ′κ > 0 are arbitrarily small constants.
Proof: Using the results on the vector quantization in

[14], [16], [17], we show that the upper-bound of the LIF
metric can be written by two independent terms as

η
[i,j]
VQ =

∥∥∥G[i,j]ŵ[i,j]
VQ

∥∥∥2

(33)

≤ ε̃−1
κ σ

[i,j]
L

2
+ (1 + µ)νf ε̃−1

κ

∥∥∥G[i,j]ũ
∥∥∥2

, (34)

where ε̃κ, µ > 0 are arbitrarily small constants, and ũ becomes
an independent random vector isotropically distributed over
the L-dimensional unit sphere as ε̃κ → 0. Here, νf denotes the
Gilbert-Vashamov bound on the distance of any two codebook
vectors, which is given by [14], [18]

νf , Nf
−1/(L−1). (35)

Note that the first term of (34) is a function of σ
[i,j]
L

2
, and

hence, similar derivations in Section III-B2 are used for this
term. On the other hand, the second term becomes a Chi-
square random variable with degrees of freedom 2(K − 1)S
for arbitrarily small ε̃κ, and thus, the results in Section III-B1
are also used. The detailed proof is shown in [11].

Thus, a trade-off between Nf and the required user scaling
is clearly observed from (32). Specifically, if Nf scales poly-
nomially with respect to SNR, then, the required user scaling
varies accordingly.

Corollary 1: From Theorem 4, the loss due to a finite
codebook becomes negligible and we only require N =
ω

(
SNR(K−1)S−L+1

)
to achieve the DoF of KS, if Nf =

ω
(

SNR(L−1)2/((K−1)S)
)

.
We complete Section III-B with the following remarks.
Remark 1: If L = 1, then the channel becomes SIMO

IMAC, and the user scaling results given in (15), (22), and
(32) (for any Nf > 1) become N = ω

(
SNR(K−1)S

)
, which

is consistent with the result in Theorem 1.
Remark 2: Note that if L ≥ (K − 1)S + 1, then w[i,j]

SVD can
be chosen such that η

[i,j]
SVD = 0 as seen from (18) to (20).

C. Comparison

For comparison, we now consider an upper limit on the
DoF in MIMO IMAC. From a Genie-aided removal of all the
inter-cell interferences, we obtain K parallel MAC systems.
Under the basic assumption that S MSs in a cell transmit
simultaneously, the DoF for each MAC is thus upper-bounded
by S, which is the same as the SIMO IMAC case [9]. Hence,
this ideal upper bound on the total DoF, given by KS, matches
our lower bound that is achieved using the OIA based only on
local CSIT at each MS.

R[i,j] = log
(
1 + SINR[i,j]

)
= log

1 +
SNR

∥fi,j∥2 +
∑K

k=1,k ̸=i

∑S
m=1

∣∣∣fi,jHUi
HH[k,m]

i w[k,m]
∣∣∣2 SNR

 . (11)
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Fig. 2. Sum-LIF vs. N in MIMO IMAC where K = 2, M = 4, S = 3,
L = 2, and SNR=10dB.

IV. NUMERICAL EXAMPLES

For comparison, the max-SNR scheme was considered, in
which each MS employs eigen-beamforming to maximize its
SNR and the BS selects best S MSs that have higher effective
SNRs than the rest. In addition, the OIA scheme employing a
fixed weight vector, i.e., w[i,j] = e1 for all MSs, is considered,
which is equivalent to the OIA scheme for SIMO IMAC. Thus,
we refer this scheme as ‘SIMO OIA’. For the proposed vector-
quantized OIA, the random codebook was assumed, each
element of which was independently and uniformly generated
in a unit sphere.

Fig. 2 depicts the log-log plot of the sum-LIF, the sum of
the LIF metrics of the selected MSs, vs. N when K = 2,
L = 2, M = 4, S = 3, and SNR is 10dB. This performance
measurement enables us to measure the quality of the proposed
OIA schemes, as shown in [4]. The sum-LIF of the antenna
selection-based OIA as well as that of the vector-quantized
OIA with fixed nf degrease with respect to N at the same
rate of the SIMO OIA, because all these schemes are subject
to the required user scaling of SNR(K−1)S . On the other hand,
the decreasing rate of the SVD-based OIA is higher, which is
subject to the required user scaling of SNR(K−1)S−L+1.

Fig. 3 illustrates the sum-rates of the considered schemes
when K = 2, M = 4, S = 3, N = 100, and L = 2. A trade-
off between the sum-rate for given N and the quantization
level Nf is clearly observed. The sum-rate of the vector-
quantized OIA with nf = 9 nearly attains the sum-rate of
the SVD-based OIA.
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